EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transition from Deflagration to Detonation in Condensed Phases

Download or read book Transition from Deflagration to Detonation in Condensed Phases written by Aleksandr Fedorovich Beli︠a︡ev and published by . This book was released on 1975 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Previous ed.: Izdatel'stvo Nauka, Moskva, 1973.

Book Transition from Deflagration to Detonation in Condensed Phases

Download or read book Transition from Deflagration to Detonation in Condensed Phases written by A.F. Belyaev and published by . This book was released on 1975 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detonation in Condensed Explosives

Download or read book Detonation in Condensed Explosives written by James Taylor and published by . This book was released on 1952 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detonation Shock and Ignition Dynamics in Condensed Phase Explosives

Download or read book Detonation Shock and Ignition Dynamics in Condensed Phase Explosives written by Juan A. Saenz and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We investigate the ignition and dynamics of detonation waves in condensed phase explosives using direct numerical simulations and asymptotic analysis. We develop a model to simulate deflagration to detonation transition in pentaerythritol tetranitrate powders. The model uses a continuum mechanics formulation of conservation laws for a mixture of solid reactants and gas products, written in terms of mixture quantities, plus two independent variables used to account for exothermic conversion of solid reactants into gas products, and compaction associated with pore collapse and grain rearrangement. We propose a simple empirical dependence of the reaction rate on the initial bed compaction that allows us to calibrate the model for a wide range of initial conditions. For the solid reactants we use a wide ranging equation of state. We suggest phenomenological closure relations, consistent with the limit of a compressible inert material and of a solid fully reactive material, such that the equation of state can be posed only in terms of mixture quantities and the reaction and compaction variables. We demonstrate the model's ability to capture deflagration to detonation transition in pentaerythritol tetranitrate powders by matching transients typically observed in experiments, through simulation. We develop an asymptotic formulation to calculate an intrinsic relation between the shock acceleration, velocity and curvature of self-sustained detonation waves in the limit of small time variation and small curvature of the lead shock front in condensed phase explosives. The formulation is developed in terms of a general, incomplete equation of state with composition variables to represent scalar quantities for a general range of phenomena. The results presented here are the first calculations obtained from asymptotic detonation shock dynamics relations for general material models. The formulation is a generalization of an asymptotic theory for a polytropic equation of state and a single step Arrhenius reaction rate model. We discuss the assumptions and justify the generalizations made that allow the use of general form incomplete equations of state. We test the proposed theory by calculating quasi-steady relations between detonation velocity and curvature and the dynamics of ignition events in a reactive hydrogen-oxygen mixture using an ideal equation of state and single step Arrhenius reaction rate model, and compare the results with those obtained using the original asymptotic theory. We find that quasi-steady relations between detonation velocity and curvature calculated using the proposed theory are in better agreement with numerical calculations than the original theory. We also use an equation of state that realistically represents condensed phase explosives, and two composition variables to track reaction and compaction processes, to perform calculations of quasi-steady relations between detonation velocity and curvature, detonation shock acceleration fields as a function of detonation velocity and curvature, and the dynamics of ignition events in solid PBX9501 and in PETN powders. We compare our results with numerical calculations of detonation shock dynamics and direct numerical simulations. We find that the time it takes an ignition wave to become quasi-steady is short, explaining why the quasi-steady relation between the detonation velocity and curvature can sometimes be a good approximation for a speed rule.

Book The Transition from Deflagration to Detonation

Download or read book The Transition from Deflagration to Detonation written by Donald Scott Stewart and published by . This book was released on 1981 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings

Download or read book Proceedings written by and published by . This book was released on 1982 with total page 1126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detonation and Two Phase Flow

Download or read book Detonation and Two Phase Flow written by S Penner and published by Elsevier. This book was released on 2012-12-02 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Astronautics and Rocketry, Volume 6: Detonation and Two-Phase Flow compiles technical papers presented at the ARS Propellants, Combustion, and Liquid Rockets Conference held in Palm Beach, Florida on April 26-28, 1961. This book provides an excellent illustration of research and development on a selected group of problems relating to detonations, two-phase nozzle flow, and combustion in liquid fuel rocket engines. This volume is divided into two parts. Part 1 covers the entire range of physical conditions under which detonation may be initiated or sustained, such as high explosives, solid propellants, liquid sprays, and gases. Experimental and theoretical studies are also discussed, including the significant progress of the basic phenomena involved in transition from deflagration to detonation, and nature of stable detonations in dilute sprays and other systems. The perennial problems associated with high frequency instabilities in liquid fuel rocket engines are considered in Part 2. This publication is valuable to students and investigators working in the field of propulsion research and development.

Book Shock Wave Science and Technology Reference Library  Vol  5

Download or read book Shock Wave Science and Technology Reference Library Vol 5 written by Blaine Asay and published by Springer Science & Business Media. This book was released on 2009-12-16 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Los Alamos National Laboratory is an incredible place. It was conceived and born amidst the most desperate of circumstances. It attracted some of the most brilliant minds, the most innovative entrepreneurs, and the most c- ative tinkerers of that generation. Out of that milieu emerged physics and engineering that beforehand was either unimagined, or thought to be f- tasy. One of the ?elds essentially invented during those years was the science of precision high explosives. Before 1942, explosives were used in munitions and commercial pursuits that demanded proper chemistry and con?nement for the necessary e?ect, but little else. The needs and requirements of the Manhattan project were of a much more precise and speci?c nature. Spatial and temporal speci?cations were reduced from centimeters and milliseconds to micrometers and nanoseconds. New theory and computational tools were required along with a raft of new experimental techniques and novel ways of interpreting the results. Over the next 40 years, the emphasis was on higher energy in smaller packages, more precise initiation schemes, better and safer formulations, and greater accuracy in forecasting performance. Researchers from many institutions began working in the emerging and expanding ?eld. In the midst of all of the work and progress in precision initiation and scienti?c study, in the early 1960s, papers began to appear detailing the ?rst quantitative studies of the transition from de?agration to detonation (DDT), ?rst in cast, then in pressed explosives, and ?nally in propellants.

Book Proceedings

Download or read book Proceedings written by and published by . This book was released on 1989 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented in this publication cover special problems in the field of energetic materials, particularly detonation phenomena in solids and liquids. General subject areas include shock-to-detonation transition, time resolved chemistry, initiation modeling, deflagration-to-detonation transition, equation of state and equation of state and performance, composites and emulsions, and composites and emulsions/underwater explosives, reaction zone, detonation wave propagation, hot spots, detonation products, chemistry and compositions, and special initiation.

Book Detonation Phenomena of Condensed Explosives

Download or read book Detonation Phenomena of Condensed Explosives written by Shiro Kubota and published by Springer Nature. This book was released on 2023-01-13 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents fundamental theory of shock and detonation waves as well as selected studies in detonation research in Japan, contributed by selected experts in safety research on explosives, development of industrial explosives, and application of explosives. It also reports detonation research in Japan featuring industrial explosives that include ammonium nitrate-based explosives and liquid explosives. Intended as a monographic-style book, it consistently uses technical terms and symbols and creates organic links between various detonation phenomena in application of explosives, fundamental theory of detonation waves, measurement methods, and individual studies. Among other features, the book presents a historical perspective of shock wave and detonation research in Japan, pedagogical materials for young researchers in detonation physics, and an introduction to works in Japan, including equations of state, which are worthy of attention but about which very little is known internationally. Further, the concise pedagogical chapters also characterize this book as a primer of detonation of condensed explosives and help readers start their own research.

Book Combustion

Download or read book Combustion written by Irvin Glassman and published by Academic Press. This book was released on 2014-12-02 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout its previous four editions, Combustion has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications—including power generation in internal combustion automobile engines and gas turbine engines. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions, make this a crucial area of engineering. New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion—all interrelated and discussed by considering scaling issues (e.g., length and time scales) New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms Expanded coverage of turbulent reactive flows to better illustrate real-world applications Important new sections on stabilization of diffusion flames—for the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization

Book Combustion Theory

    Book Details:
  • Author : Forman A. Williams
  • Publisher : CRC Press
  • Release : 2018-03-05
  • ISBN : 0429973683
  • Pages : 549 pages

Download or read book Combustion Theory written by Forman A. Williams and published by CRC Press. This book was released on 2018-03-05 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.

Book 16th JANNAF Combustion Meeting  Naval Postgraduate School  Monterey  California  September 10 14  1979  DDT and gun propellants  unclassified

Download or read book 16th JANNAF Combustion Meeting Naval Postgraduate School Monterey California September 10 14 1979 DDT and gun propellants unclassified written by and published by . This book was released on 1979 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Explosions and Blast Waves

Download or read book Modeling Explosions and Blast Waves written by K. Ramamurthi and published by Springer Nature. This book was released on 2021-06-19 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: b="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.