Download or read book Transformative Concepts for Drug Design Target Wrapping written by Ariel Fernandez and published by Springer Science & Business Media. This book was released on 2010-04-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: In spite of the enticing promises of the post-genomic era, the pharmaceutical world is in a state of disarray. Drug discovery seems now riskier and more uncertain than ever. Thus, projects get routinely terminated in mid-stage clinical trials, new targets are getting harder to find, and successful therapeutic agents are often recalled as unanticipated side effects are discovered. Exploiting the huge output of genomic studies to make safer drugs has proven to be much more difficult than anticipated. More than ever, the lead in the pharmaceutical industry depends on the ability to harness innovative research, and this type of innovation can only come from one source: fundamental knowledge. This book squarely addresses this crucial problem since it introduces fundamental discoveries in basic biomolecular research that hold potential to broaden the technological base of the pharmaceutical industry. The book takes a fresh and fundamental look at the problem of how to design an effective drug with controlled specificity. Since the novel transformative concepts are unfamiliar to most practitioners, the first part of this book explains matters very carefully starting from a fairly elementary physico-chemical level. The second part of the book is devoted to practical applications, aiming at nothing less than a paradigm shift in drug design. This book is addressed to scientists working at the cutting edge of research in the pharmaceutical industry, but the material is at the same time accessible to senior undergraduates or graduate students interested in drug discovery and molecular design.
Download or read book Physics at the Biomolecular Interface written by Ariel Fernández and published by Springer. This book was released on 2016-05-11 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood without dealing with interfacial behaviour. There is an urge to grasp how biologically relevant behaviour is shaped by the structuring of biomolecular interfaces and how interfacial tension affects the molecular events that take place in the cell. This book squarely addresses these needs from a physicist perspective. The book may serve as a monograph for practitioners and, alternatively, as an advanced textbook. Fruitful reading requires a background in physical chemistry and some basics in biophysics. The selected problems at the end of the chapters and the progression in conceptual difficulty make it a suitable textbook for a graduate level course or an elective course for seniors majoring in chemistry, physics, biomedical engineering or related disciplines.
Download or read book Biomolecular Interfaces written by Ariel Fernández Stigliano and published by Springer. This book was released on 2015-04-20 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the aqueous interface of biomolecules, a vital yet overlooked area of biophysical research. Most biological phenomena cannot be fully understood at the molecular level without considering interfacial behavior. The author presents conceptual advances in molecular biophysics that herald the advent of a new discipline, epistructural biology, centered on the interactions of water and bio molecular structures across the interface. The author introduces powerful theoretical and computational resources in order to address fundamental topics such as protein folding, the physico-chemical basis of enzyme catalysis and protein associations. On the basis of this information, a multi-disciplinary approach is used to engineer therapeutic drugs and to allow substantive advances in targeted molecular medicine. This book will be of interest to scientists, students and practitioners in the fields of chemistry, biophysics and biomedical engineering.
Download or read book Computational and Visualization Techniques for Structural Bioinformatics Using Chimera written by Forbes J. Burkowski and published by CRC Press. This book was released on 2014-07-29 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Step-by-Step Guide to Describing Biomolecular StructureComputational and Visualization Techniques for Structural Bioinformatics Using Chimera shows how to perform computations with Python scripts in the Chimera environment. It focuses on the three core areas needed to study structural bioinformatics: biochemistry, mathematics, and computation.Und
Download or read book Artificial Intelligence Platform For Molecular Targeted Therapy A Translational Science Approach written by Ariel Fernandez and published by World Scientific. This book was released on 2021-03-12 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the era of big biomedical data, there are many ways in which artificial intelligence (AI) is likely to broaden the technological base of the pharmaceutical industry. Cheminformatic applications of AI involving the parsing of chemical space are already being implemented to infer compound properties and activity. By contrast, dynamic aspects of the design of drug/target interfaces have received little attention due to the inherent difficulties in dealing with physical phenomena that often do not conform to simplifying views.This book focuses precisely on dynamic drug/target interfaces and argues that the true game change in pharmaceutical discovery will come as AI is enabled to solve core problems in molecular biophysics that are intimately related to rational drug design and drug discovery.Here are a few examples to convey the flavor of our quest: How do we therapeutically impair a dysfunctional protein with unknown structure or regulation but known to be a culprit of disease? In regards to SARS-CoV-2, what is the structural impact of a dominant mutation?, how does the structure change translate into a fitness advantage?, what new therapeutic opportunity arises? How do we extend molecular dynamics simulations to realistic timescales, to capture the rare events associated with drug targeting in vivo? How do we control specificity in drug design to selectively remove side effects? This is the type of problems, directly related to the understanding of drug/target interfaces, that the book squarely addresses by leveraging a comprehensive AI-empowered approach.
Download or read book Biopolymers for Medical Applications written by Juan M. Ruso and published by CRC Press. This book was released on 2017-02-17 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an experimental and computational account of the applications of biopolymers in the field of medicine. Biopolymers are macromolecules produced by living systems, such as proteins, polypeptides, nucleic acids, and polysaccharides. Their advantages over polymers produced using synthetic chemistry include: diversity, abundance, relatively low cost, and sustainability. This book explains techniques for the production of different biodevices, such as scaffolds, hydrogels, functional nanoparticles, microcapsules, and nanocapsules. Furthermore, developments in nanodrug delivery, gene therapy, and tissue engineering are described.
Download or read book Membrane Hydration written by E. Anibal Disalvo and published by Springer. This book was released on 2015-10-05 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the importance of water in determining the structure, stability and responsive behavior of biological membranes. Water confers to lipid membranes unique features in terms of surface and mechanical properties. The analysis of the hydration forces, plasticiser effects, controlled hydration, formation of microdomains of confined water suggests that water is an active constituent in a water-lipid system. The chapters describe water organization at the lipid membrane–water interphase, the water penetration, the long range water structure in the presence of lipid membranes by means of X-ray and neutron scattering, general polarization, fluorescent probes, ATR-FTIR and near infrared spectroscopies, piezo electric methods, computer simulation and surface thermodynamics. Permeation, percolation, osmotic stress, polarization, protrusion, sorption, hydrophobicity, density fluctuations are treated in detail in self-assembled bilayers. Studies in lipid monolayers show the correlation of surface pressure with water activity and its role in peptide and enzyme interactions. The book concludes with a discussion on anhydrobiosis and the effect of water replacement in microdomains and its consequence for cell function. New definitions of lipid/water interphases consider water not only as a structural-making solvent but as a mediator in signalling metabolic activity, modulating protein insertion and enzymatic activity, triggering oscillatory reactions and functioning of membrane bound receptors. Since these effects occur at the molecular level, membrane hydration appears fundamental to understand the behavior of nano systems and confined environments mimicking biological systems. These insights in structural, thermodynamical and mechanical water properties give a base for new paradigms in membrane structure and function for those interested in biophysics, physical chemistry, biology, bio and nano medicine, biochemistry, biotechnology and nano sciences searching for biotechnological inputs in human health, food industry, plant growing and energy conversion.
Download or read book Topological Dynamics in Metamodel Discovery with Artificial Intelligence written by Ariel Fernández and published by CRC Press. This book was released on 2022-12-21 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leveraging of artificial intelligence (AI) for model discovery in dynamical systems is cross-fertilizing and revolutionizing both disciplines, heralding a new era of data-driven science. This book is placed at the forefront of this endeavor, taking model discovery to the next level. Dealing with artificial intelligence, this book delineates AI’s role in model discovery for dynamical systems. With the implementation of topological methods to construct metamodels, it engages with levels of complexity and multiscale hierarchies hitherto considered off limits for data science. Key Features: Introduces new and advanced methods of model discovery for time series data using artificial intelligence Implements topological approaches to distill "machine-intuitive" models from complex dynamics data Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations Heralds a new era in data-driven science and engineering based on the operational concept of "computational intuition" Intended for graduate students, researchers, and practitioners interested in dynamical systems empowered by AI or machine learning and in their biological, engineering, and biomedical applications, this book will represent a significant educational resource for people engaged in AI-related cross-disciplinary projects.
Download or read book Computational Drug Delivery written by Pooja A. Chawla and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-10-07 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book bridges the gap between pharmaceutics and molecular modelling at the micro, meso and macro scale. It covers Lipinski's rule of five, nanoparticulate drug delivery, computational prediction of drug solubility and ability to cross blood brain barrier, computer-based simulation of pharmacokinetic parameters, virtual screening of mucoadhesive polymers, QSPR modelling, designing of 2D nanomaterials and role of principal component analysis.
Download or read book Artificial Intelligence in Drug Discovery written by Nathan Brown and published by Royal Society of Chemistry. This book was released on 2020-11-04 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Download or read book Label Free Technologies For Drug Discovery written by Matthew Cooper and published by John Wiley & Sons. This book was released on 2011-02-11 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two decades the benefits of label-free biosensor analysis have begun to make an impact in the market, and systems are beginning to be used as mainstream research tools in many drug discovery laboratories. Label-Free Technologies For Drug Discovery summarises the latest and emerging developments in label-free detection systems, their underlying technology principles and end-user case studies that reveal the power and limitations of label-free in all areas of drug discovery. Label-free technologies discussed include SPR, NMR, high-throughput mass spectrometry, resonant waveguide plate-based screening, transmitted-light imaging, isothermal titration calorimetry, optical and impedance cell-based assays and other biophysical methods. The technologies are discussed in relation to their use as screening technologies, high-content technologies, hit finding and hit validation strategies, mode of action and ADME/T, access to difficult target classes, cell-based receptor/ligand interactions particularly orphan receptors, and antibody and small molecule affinity and kinetic analysis. Label-Free Technologies For Drug Discovery is an essential guide to this emerging class of tools for researchers in drug discovery and development, particularly high-throughput screening and compound profiling teams, medicinal chemists, structural biologists, assay developers, ADME/T specialists, and others interested in biomolecular interaction analysis.
Download or read book Improving and Accelerating Therapeutic Development for Nervous System Disorders written by Institute of Medicine and published by National Academies Press. This book was released on 2014-02-06 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.
Download or read book Nanotechnology for Electronic Applications written by Nabisab Mujawar Mubarak and published by Springer Nature. This book was released on 2022-01-17 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the electronic applications of nanotechnology. It presents latest research in the areas of nanotechnology applied to the fields of electronics and energy. Various topics covered in this book include nanotechnology in electronic field, electronic chips and circuits, batteries, wireless devices, energy storage, semiconductors, fuel cells, defense and military equipment, and aerospace industry, This book will be useful for engineers, researchers and industry professionals primarily in the fields of electrical engineering engineering, materials science and nanotechnology.
Download or read book The Good Side of Technology How We Can Harness the Positive Potential of Digital Technology to Maximize Well being written by John F. Hunter and published by Frontiers Media SA. This book was released on 2023-10-31 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Textbook of Nanoneuroscience and Nanoneurosurgery written by Babak Kateb and published by Springer Nature. This book was released on with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Drug like Properties Concepts Structure Design and Methods written by Li Di and published by Elsevier. This book was released on 2010-07-26 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
Download or read book Bioinformatics and Drug Discovery written by Richard S. Larson and published by . This book was released on 2012 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in drug discovery have been rapid. The second edition of Bioinformatics and Drug Discovery has been completely updated to include topics that range from new technologies in target identification, genomic analysis, cheminformatics, protein analysis, and network or pathway analysis. Each chapter provides an extended introduction that describes the theory and application of the technology. In the second part of each chapter, detailed procedures related to the use of these technologies and software have been incorporated. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Bioinformatics and Drug Discovery, Second Edition seeks to aid scientists in the further study of the rapidly expanding field of drug discovery.