Download or read book Better Deep Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-12-13 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning neural networks have become easy to define and fit, but are still hard to configure. Discover exactly how to improve the performance of deep learning neural network models on your predictive modeling projects. With clear explanations, standard Python libraries, and step-by-step tutorial lessons, you’ll discover how to better train your models, reduce overfitting, and make more accurate predictions.
Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Download or read book Introduction to Artificial Neural Systems written by Jacek M. Zurada and published by Brooks/Cole. This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Neural Computation written by Emile Fiesler and published by CRC Press. This book was released on 2020-01-15 with total page 1129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar probl
Download or read book Kalman Filtering and Neural Networks written by Simon Haykin and published by John Wiley & Sons. This book was released on 2004-03-24 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover: An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF) Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes The dual estimation problem Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm The unscented Kalman filter Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
Download or read book Statistics and Neural Networks written by Jim W. Kay and published by Oxford University Press, USA. This book was released on 1999 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad overview of important current developments in the area of neural networks, this book highlights likely future trends.
Download or read book Normalization Techniques in Deep Learning written by Lei Huang and published by Springer Nature. This book was released on 2022-10-08 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and surveys normalization techniques with a deep analysis in training deep neural networks. In addition, the author provides technical details in designing new normalization methods and network architectures tailored to specific tasks. Normalization methods can improve the training stability, optimization efficiency, and generalization ability of deep neural networks (DNNs) and have become basic components in most state-of-the-art DNN architectures. The author provides guidelines for elaborating, understanding, and applying normalization methods. This book is ideal for readers working on the development of novel deep learning algorithms and/or their applications to solve practical problems in computer vision and machine learning tasks. The book also serves as a resource researchers, engineers, and students who are new to the field and need to understand and train DNNs.
Download or read book Deep Learning With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-05-13 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.
Download or read book Proceedings of International Joint Conference on Computational Intelligence written by Mohammad Shorif Uddin and published by Springer Nature. This book was released on 2020-05-22 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers outstanding research papers presented at the International Joint Conference on Computational Intelligence (IJCCI 2019), held at the University of Liberal Arts Bangladesh (ULAB), Dhaka, on 25–26 October 2019 and jointly organized by the University of Liberal Arts Bangladesh (ULAB), Bangladesh; Jahangirnagar University (JU), Bangladesh; and South Asian University (SAU), India. These proceedings present novel contributions in the areas of computational intelligence, and offer valuable reference material for advanced research. The topics covered include collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
Download or read book Artificial Intelligence and Soft Computing written by Leszek Rutkowski and published by Springer Nature. This book was released on 2020-10-20 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 12415 and 12416 constitutes the refereed proceedings of of the 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2020, held in Zakopane, Poland*, in October 2020. The 112 revised full papers presented were carefully reviewed and selected from 265 submissions. The papers included in the first volume are organized in the following six parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; pattern classification; bioinformatics, biometrics and medical applications; artificial intelligence in modeling and simulation. The papers included in the second volume are organized in the following four parts: computer vision, image and speech analysis; data mining; various problems of artificial intelligence; agent systems, robotics and control. *The conference was held virtually due to the COVID-19 pandemic.
Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Download or read book Information Theoretic Aspects of Neural Networks written by P. S. Neelakanta and published by CRC Press. This book was released on 2020-09-23 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: Shannon information and information dynamics neural complexity as an information processing system memory and information storage in the interconnected neural web extremum (maximum and minimum) information entropy neural network training non-conventional, statistical distance-measures for neural network optimizations symmetric and asymmetric characteristics of information-theoretic error-metrics algorithmic complexity based representation of neural information-theoretic parameters genetic algorithms versus neural information dynamics of neurocybernetics viewed in the information-theoretic plane nonlinear, information-theoretic transfer function of the neural cellular units statistical mechanics, neural networks, and information theory semiotic framework of neural information processing and neural information flow fuzzy information and neural networks neural dynamics conceived through fuzzy information parameters neural information flow dynamics informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying the concepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.
Download or read book Advancements in Automation Robotics and Sensing written by B Vinod and published by Springer. This book was released on 2016-10-22 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the First International Conference of Advancements in Automation, Robotics and Sensing, ICAARS 2016, held in Coimbatore, India, in June 2016. The 83 revised selected papers were selected from 159 submissions and focus on industrial robotics, mobile robotics, adaptive control, vision system, smart materials, and teleoperation.
Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
Download or read book Advances in Neural Networks ISNN 2006 written by Jun Wang and published by Springer Science & Business Media. This book was released on 2006-05-12 with total page 1470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is Volume II of a three volume set constituting the refereed proceedings of the Third International Symposium on Neural Networks, ISNN 2006. 616 revised papers are organized in topical sections on neurobiological analysis, theoretical analysis, neurodynamic optimization, learning algorithms, model design, kernel methods, data preprocessing, pattern classification, computer vision, image and signal processing, system modeling, robotic systems, transportation systems, communication networks, information security, fault detection, financial analysis, bioinformatics, biomedical and industrial applications, and more.
Download or read book Machine Learning for Factor Investing written by Guillaume Coqueret and published by CRC Press. This book was released on 2023-08-08 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics. The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models. All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.
Download or read book Hybrid Neural Systems written by Stefan Wermter and published by Springer Science & Business Media. This book was released on 2000-03-29 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.