EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Traffic Signal Control at Connected Vehicle Equipped Intersections

Download or read book Traffic Signal Control at Connected Vehicle Equipped Intersections written by Zhitong Huang and published by . This book was released on 2016 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dissertation presents a connected vehicle based traffic signal control model (CVTSCM) for signalized arterials. The model addresses different levels of traffic congestion starting with the initial deployment of connected vehicle technologies focusing on two modules created in CVTSCM. For near/under-saturated intersections, an arterial-level traffic progression optimization model (ALTPOM) is being proposed. ALTPOM improves traffic progression by optimizing offsets for an entire signalized arterial simultaneously. To optimize these offsets, splits of coordinated intersections are first adjusted to balance predicted upcoming demands of all approaches at individual intersections. An open source traffic simulator was selected to implement and evaluate the performance of ALTPOM. The case studies’ field signal timing plans were coordinated and optimized using TRANSYT-7F as the benchmark. ALTPOM was implemented with connected vehicles penetration rates at 25% and 50%, ALTPOM significantly outperforms TRANSYT-7F with at least 26.0% reduction of control delay (sec/vehicle) and a 4.4% increase of throughput for both directions of major and minor streets. This technique differs from traditional traffic coordination which prioritizes major street traffic, and thereby generally results in degrading performance on minor streets. ALTPOM also provides smooth traffic progression for the coordinated direction with little impact on the opposite direction. The performance of ALTPOM improves as the penetration rate of connected vehicles increases. For saturated/oversaturated conditions, two queue length management based Active Traffic Management (ATM) strategies are proposed, analytically investigated, and experimentally validated. The first strategy distributes as much green time as possible for approaches with higher saturation discharge rate in order to reduce delay. For the second approach, green times are allocated to balance queue lengths of major and minor streets preventing queue spillback or gridlock. Both strategies were formulated initially using uniform arrival and departure, and then validated using field vehicle trajectory data. After validation of the modules, the effectiveness of CVTSCM is proven. Then, conclusions and recommendations for future researches are presented at the end.

Book Enhanced Traffic Signal Operation Using Connected Vehicle Data

Download or read book Enhanced Traffic Signal Operation Using Connected Vehicle Data written by Ehsan Bagheri and published by . This book was released on 2017 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: As traffic on urban road network increases, congestion and delays are becoming more severe. At grade intersections form capacity bottlenecks in urban road networks because at these locations, capacity must be shared by competing traffic movements. Traffic signals are the most common method by which the right of way is dynamically allocated to conflicting movements. A range of traffic signal control strategies exist including fixed time control, actuated control, and adaptive traffic signal control (ATSC). ATSC relies on traffic sensors to estimate inputs such as traffic demands, queue lengths, etc. and then dynamically adjusts signal timings with the objective to minimize delays and stops at the intersection. Despite, the advantages of these ATSC systems, one of the barriers limiting greater use of these systems is the large number of traffic sensors required to provide the essential information for their signal timing optimization methodologies. A recently introduced technology called connected vehicles will make vehicles capable of providing detailed information such as their position, speed, acceleration rate, etc. in real-time using a wireless technology. The deployment of connected vehicle technology would provide the opportunity to introduce new traffic control strategies or to enhance the existing one. Some work has been done to-date to develop new ATSC systems on the basis of the data provided by connected vehicles which are mainly designed on the assumption that all vehicles on the network are equipped with the connected vehicle technology. The goals of such systems are to: 1) provide better performance at signalized intersections using enhanced algorithms based on richer data provided by the connected vehicles; and 2) reduce (or eliminate) the need for fixed point detectors/sensors in order to reduce deployment and maintenance costs. However, no work has been done to investigate how connected vehicle data can improve the performance of ATSC systems that are currently deployed and that operate using data from traditional detectors. Moreover, achieving a 100% market penetration of connected vehicles may take more than 30 years (even if the technology is mandated on new vehicles). Therefore, it is necessary to provide a solution that is capable of improving the performance of signalized intersections during this transition period using connected vehicle data even at low market penetration rates. This research examines the use of connected vehicle data as the only data source at different market penetration rates aiming to provide the required inputs for conventional adaptive signal control systems. The thesis proposes various methodologies to: 1) estimate queues at signalized intersections; 2) dynamically estimate the saturation flow rate required for optimizing the timings of traffic signals at intersections; and 3) estimate the free flow speed on arterials for the purpose of optimizing offsets between traffic signals. This thesis has resulted in the following findings: 1. Connected vehicle data can be used to estimate the queue length at signalized intersections especially for the purpose of estimating the saturation flow rate. The vehicles' length information provided by connected vehicles can be used to enhance the queue estimation when the traffic composition changes on a network. 2. The proposed methodology for estimating the saturation flow rate is able to estimate temporally varying saturation flow rates in response to changing network conditions, including lane blockages and queue spillback that limit discharge rates, and do so with an acceptable range of errors even at low level of market penetration of connected vehicles. The evaluation of the method for a range of traffic Level of Service (LOS) shows that the maximum observed mean absolute relative error (6.2%) occurs at LOS F and when only 10% of vehicles in the traffic stream are connected vehicles. 3. The proposed method for estimating the Free Flow Speed (FFS) on arterial roads can provide estimations close to the known ground truth and can respond to changes in the FFS. The results also show that the maximum absolute error of approximately 4.7 km/h in the estimated FFS was observed at 10% market penetration rate of connected vehicles. 4. The results of an evaluation of an adaptive signal control system based on connected vehicle data in a microsimulation environment show that the adaptive signal control system is able to adjust timings of signals at intersections in response to changes in the saturation flow rate and free flow speed estimated from connected vehicle data using the proposed methodologies. The comparison of the adaptive signal control system against a fixed time control at 20% and 100% CV market penetration rates shows improvements in average vehicular delay and average number of stops at both market penetration rates and though improvements are larger for 100% CV LMP, approximately 70% of these improvements are achieved at 20% CV LMP.

Book ITS Sensors and Architectures for Traffic Management and Connected Vehicles

Download or read book ITS Sensors and Architectures for Traffic Management and Connected Vehicles written by Lawrence A. Klein and published by CRC Press. This book was released on 2017-08-07 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intelligent transportation system (ITS) offers considerable opportunities for increasing the safety, efficiency, and predictability of traffic flow and reducing vehicle emissions. Sensors (or detectors) enable the effective gathering of arterial and controlled-access highway information in support of automatic incident detection, active transportation and demand management, traffic-adaptive signal control, and ramp and freeway metering and dispatching of emergency response providers. As traffic flow sensors are integrated with big data sources such as connected and cooperative vehicles, and cell phones and other Bluetooth-enabled devices, more accurate and timely traffic flow information can be obtained. The book examines the roles of traffic management centers that serve cities, counties, and other regions, and the collocation issues that ensue when multiple agencies share the same space. It describes sensor applications and data requirements for several ITS strategies; sensor technologies; sensor installation, initialization, and field-testing procedures; and alternate sources of traffic flow data. The book addresses concerns related to the introduction of automated and connected vehicles, and the benefits that systems engineering and national ITS architectures in the US, Europe, Japan, and elsewhere bring to ITS. Sensor and data fusion benefits to traffic management are described, while the Bayesian and Dempster–Shafer approaches to data fusion are discussed in more detail. ITS Sensors and Architectures for Traffic Management and Connected Vehicles suits the needs of personnel in transportation institutes and highway agencies, and students in undergraduate or graduate transportation engineering courses.

Book Traffic Signal Control in a Connected and Autonomous Vehicle Environment Considering Pedestrians

Download or read book Traffic Signal Control in a Connected and Autonomous Vehicle Environment Considering Pedestrians written by Xiao Liang and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Traffic signals help to maintain order in urban traffic networks and reduce vehicle conflicts by dynamically assigning right-of-way to different vehicle movements. However, by temporarily stopping vehicle movements at regular intervals, traffic signals are a major source of urban congestion and cause increased vehicle delay, fuel consumption, and environmental pollution. Connected and Autonomous Vehicle technology may be utilized to optimize traffic operations at signalized intersections, since connected vehicles have the ability to communicate with the surrounding infrastructure and autonomous vehicles can follow the instructions from the signal or a central control system. Connected vehicle information received by a signal controller can be used to help adjust signal timings to tailor to the specific dynamic vehicle demand. Information about the signal timing plan can then be communicated back to the vehicles so that they can adjust their speeds/trajectories to further improve traffic operations. Based on a thorough literature review of existing studies in the area of signal control utilizing information from connected and autonomous vehicles, three research gaps are found: 1) application are limited to unrealistic intersection configurations; 2) methods are limited to a single mode; or, 3) methods only optimize the average value of measure of effectiveness while ignoring the distribution among vehicles. As a part of this dissertation, several methods will be proposed to increase computational efficiency of an existing CAV-based joint signal timing and vehicle trajectory optimization algorithm so that it can be applied to more realistic intersection settings without adding computational burden. Doing so requires the creation of new methods to accommodate features like multiple lanes on each approach, more than two approaches and turning maneuvers. Methods to incorporate human-driven cooperative vehicles and pedestrians are also proposed and tested. A more equitable traffic signal control method is also designed.

Book Traffic Signal Timing Manual

Download or read book Traffic Signal Timing Manual written by U.s. Department of Transportation and published by CreateSpace. This book was released on 2015-02-20 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report serves as a comprehensive guide to traffic signal timing and documents the tasks completed in association with its development. The focus of this document is on traffic signal control principles, practices, and procedures. It describes the relationship between traffic signal timing and transportation policy and addresses maintenance and operations of traffic signals. It represents a synthesis of traffic signal timing concepts and their application and focuses on the use of detection, related timing parameters, and resulting effects to users at the intersection. It discusses advanced topics briefly to raise awareness related to their use and application. The purpose of the Signal Timing Manual is to provide direction and guidance to managers, supervisors, and practitioners based on sound practice to proactively and comprehensively improve signal timing. The outcome of properly training staff and proactively operating and maintaining traffic signals is signal timing that reduces congestion and fuel consumption ultimately improving our quality of life and the air we breathe. This manual provides an easy-to-use concise, practical and modular guide on signal timing. The elements of signal timing from policy and funding considerations to timing plan development, assessment, and maintenance are covered in the manual. The manual is the culmination of research into practices across North America and serves as a reference for a range of practitioners, from those involved in the day to day management, operation and maintenance of traffic signals to those that plan, design, operate and maintain these systems.

Book Robust Intelligent Traffic Signal Control Within a Vehicle to Infrastructure and Vehicle to Vehicle Communication Environment

Download or read book Robust Intelligent Traffic Signal Control Within a Vehicle to Infrastructure and Vehicle to Vehicle Communication Environment written by Qing He and published by . This book was released on 2010 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern traffic signal control systems have not changed significantly in the past 40-50 years. The most widely applied traffic signal control systems are still time-of-day, coordinated-actuated system, since many existing advanced adaptive signal control systems are too complicated and fathomless for most of people. Recent advances in communications standards and technologies provide the basis for significant improvements in traffic signal control capabilities. In the United States, the IntelliDriveSM program (originally called Vehicle Infrastructure Integration - VII) has identified 5.9GHz Digital Short Range Communications (DSRC) as the primary communications mode for vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) safety based applications, denoted as v2x. The ability for vehicles and the infrastructure to communication information is a significant advance over the current system capability of point presence and passage detection that is used in traffic control systems. Given enriched data from IntelliDriveSM, the problem of traffic control can be solved in an innovative data-driven and mathematical way to produce robust and optimal outputs. In this doctoral research, three different problems within a v2x environment- "enhanced pseudo-lane-level vehicle positioning", "robust coordinated-actuated multiple priority control", and "multimodal platoon-based arterial traffic signal control", are addressed with statistical techniques and mathematical programming. First, a pseudo-lane-level GPS positioning system is proposed based on an IntelliDriveSM v2x environment. GPS errors can be categorized into common-mode errors and noncommon-mode errors, where common-mode errors can be mitigated by differential GPS (DGPS) but noncommon-mode cannot. Common-mode GPS errors are cancelled using differential corrections broadcast from the road-side equipment (RSE). With v2i communication, a high fidelity roadway layout map (called MAP in the SAE J2735 standard) and satellite pseudo-range corrections are broadcast by the RSE. To enhance and correct lane level positioning of a vehicle, a statistical process control approach is used to detect significant vehicle driving events such as turning at an intersection or lane-changing. Whenever a turn event is detected, a mathematical program is solved to estimate and update the GPS noncommon-mode errors. Overall the GPS errors are reduced by corrections to both common-mode and noncommon-mode errors. Second, an analytical mathematical model, a mixed-integer linear program (MILP), is developed to provide robust real-time multiple priority control, assuming penetration of IntelliDriveSM is limited to emergency vehicles and transit vehicles. This is believed to be the first mathematical formulation which accommodates advanced features of modern traffic controllers, such as green extension and vehicle actuations, to provide flexibility in implementation of optimal signal plans. Signal coordination between adjacent signals is addressed by virtual coordination requests which behave significantly different than the current coordination control in a coordinated-actuated controller. The proposed new coordination method can handle both priority and coordination together to reduce and balance delays for buses and automobiles with real-time optimized solutions. The robust multiple priority control problem was simplified as a polynomial cut problem with some reasonable assumptions and applied on a real-world intersection at Southern Ave. & 67 Ave. in Phoenix, AZ on February 22, 2010 and March 10, 2010. The roadside equipment (RSE) was installed in the traffic signal control cabinet and connected with a live traffic signal controller via Ethernet. With the support of Maricopa County's Regional Emergency Action Coordinating (REACT) team, three REACT vehicles were equipped with onboard equipments (OBE). Different priority scenarios were tested including concurrent requests, conflicting requests, and mixed requests. The experiments showed that the traffic controller was able to perform desirably under each scenario. Finally, a unified platoon-based mathematical formulation called PAMSCOD is presented to perform online arterial (network) traffic signal control while considering multiple travel modes in the IntelliDriveSM environment with high market penetration, including passenger vehicles. First, a hierarchical platoon recognition algorithm is proposed to identify platoons in real-time. This algorithm can output the number of platoons approaching each intersection. Second, a mixed-integer linear program (MILP) is solved to determine the future optimal signal plans based on the real-time platoon data (and the platoon request for service) and current traffic controller status. Deviating from the traditional common network cycle length, PAMSCOD aims to provide multi-modal dynamical progression (MDP) on the arterial based on the real-time platoon information. The integer feasible solution region is enhanced in order to reduce the solution times by assuming a first-come, first-serve discipline for the platoon requests on the same approach. Microscopic online simulation in VISSIM shows that PAMSCOD can easily handle two traffic modes including buses and automobiles jointly and significantly reduce delays for both modes, compared with SYNCHRO optimized plans.

Book Traffic Signal Timing Optimization with Connected Vehicles

Download or read book Traffic Signal Timing Optimization with Connected Vehicles written by Wan Li and published by . This book was released on 2019 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent and deployment of Connected vehicle (CV) and Vehicle-to-everything (V2X) communications offer the potential to significantly improve the efficiency of traffic signal control systems. The knowledge of vehicle trajectories in the network allows for optimal signal setting and significant improvements in network performance compared to existing traffic signal control systems. This research aims to develop a framework, including modeling techniques, algorithms, and testing strategies, for urban traffic signal optimization with CVs. The objective is to improve the safety, mobility, and sustainability of all vehicles in the study areas utilizing CV data, i.e., real time information on vehicles' locations and speeds, as well as communications to the signal control systems. The proposed framework is able to optimize traffic signal timing for a single intersection and along a corridor under various market penetration of CVs. Under full penetration rate of CVs, the signal timing optimization and coordination problems are first formulated in a centralized scheme as a mixed-integer nonlinear programing (MINLP). Due to the complexity of the model, the problem is decomposed into two levels: an intersection level to optimize phase durations using dynamic programing (DP) and a corridor level to optimize the offsets of all intersections. Under medium-to-high penetration rates of CVs, Kalman filter methods are applied to estimate trajectories of unequipped vehicles given the available trajectories of CVs. The estimated trajectories combined with CV trajectories are utilized in the trajectory-based signal timing optimization process. Under relatively low penetration rates of CVs, a Deep Intersection Spatial Temporal Network (DISTN) is developed to predict short-term movement-based traffic volumes. The predicted volumes are used in a volume-based adaptive signal control method to calculate signal timing parameters. Comprehensive testing and validation of the proposed methods are conducted in traffic simulation and with real world CV (probe vehicle) data. The testing tasks aim to validate that the developed methods are computationally manageable and have the potential to be implemented in CV-based traffic signal applications in the real world.

Book Automobile Traffic Signal Control Systems

Download or read book Automobile Traffic Signal Control Systems written by Lionel M. Rodgers and published by . This book was released on 1969 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In this book, Mr. Rogers describes the basic criteria for the selection of equipment, and explains in detail how to design and apply modern traffic-control systems, based on his long experience as a traffic engineer and an electronics scientist. He also discusses equipment maintenance and the various means that can be used for electrically interconnecting intersection controllers, vehicle detectors, and central control devices" -- Foreword.

Book Traffic Control Devices Handbook

Download or read book Traffic Control Devices Handbook written by United States. National Advisory Committee on Uniform Traffic Control Devices and published by . This book was released on 1975 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook, in its treatment of signs, pavement markings and signals, presents typical values or ranges of values used for implementing traffic control measures, as well as providing examples of contract plan sheets, specifications and work orders. With respect to signs, consideration is given to materials, equipment, installation, maintenance, vandalism, etc. The section on pavement markings includes materials, methods of application and application operations. Traffic signal design, operation, equipment, and maintenance are discussed, as are various types of signal systems.

Book Traffic Control Systems Handbook

Download or read book Traffic Control Systems Handbook written by and published by . This book was released on 1976 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook, which was developed in recognition of the need for the compilation and dissemination of information on advanced traffic control systems, presents the basic principles for the planning, design, and implementation of such systems for urban streets and freeways. The presentation concept and organization of this handbook is developed from the viewpoint of systems engineering. Traffic control studies are described, and traffic control and surveillance concepts are reviewed. Hardware components are outlined, and computer concepts, and communication concepts are stated. Local and central controllers are described, as well as display, television and driver information systems. Available systems technology and candidate system definition, evaluation and implementation are also covered. The management of traffic control systems is discussed.

Book An Eco traffic Signal System Based on Connected Vehicle Technology

Download or read book An Eco traffic Signal System Based on Connected Vehicle Technology written by Anup Chitrakar and published by . This book was released on 2016 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Intelligent Transportation System uses Dedicated Short Range Communications (DSRC) for vehicle-to-vehicle and vehicle-to-infrastructure communication. This technology is used for applications that intend to increase safety and to improve traffic management and operation. For the latter it promises applications with advanced features in order to reduce fuel consumption. This research presents the design and implementation of a system architecture, diverse algorithms, and communication methods of an Eco-Traffic Signal System. The application uses vehicle-to-infrastructure communications to control traffic light timing with the goal of avoiding unnecessary stops of heavy vehicles, which in turn results in energy savings. The architecture takes advantage of Basic Safety Messages in connected vehicle technology and executes an application inside of the Road Side Unit employed in future traffic intersections. This unit facilitates the necessary algorithms and communication support to instruct the traffic controller to manage signal timing. A proof of concept of the Eco-Traffic Signal System was implemented and its functionality was verified in field tests using commercial DSRC equipment.

Book Connected Vehicles

Download or read book Connected Vehicles written by Radovan Miucic and published by Springer. This book was released on 2018-10-24 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces concepts and technologies of Intelligent Transportation Systems (ITS). It describes state of the art safety communication protocol called Dedicated Short Range Communication (DSRC), currently being considered for adoption by the USDOT and automotive industry in the US. However, the principles of this book are applicable even if the underlying physical layer protocol of V2X changes in the future, e.g. V2X changes from DSRC to cellular-based connectivity. Fundamental ITS concepts include topics like global positioning system; Vehicle to Vehicle (V2V), Vehicle to Pedestrian (V2P), and Vehicle to Infrastructure (V2I) communications; human-machine interface; and security and privacy. Fundamental concepts are sometimes followed by the real-life test experimental results (such as in V2P Chapter) and description of the performance metrics used to evaluate the results. This book also describes equations and math used in the development of the individual parts of the system. This book surveys current and previous publications for trending research in the ITS domain. It also covers state of the art standards that are in place for the DSRC in the US, starting from the application layer defined in SAE J2735 all the way to physical layer defined in IEEE 802.11. The authors provide a detailed discussion on what is needed to extend the current standards to accommodate future needs of the vehicle communications, such as needs for future autonomous vehicles. Programs and code examples accompany appropriate chapters, for example, after describing remote vehicle target classification function a pseudo code and description is provided. In addition, the book discusses current topics of the technology such as spectrum sharing, simulation, security, and privacy. The intended audience for this book includes engineering graduate students, automotive professionals/engineers, researchers and technology enthusiasts.

Book Signalized Intersections

Download or read book Signalized Intersections written by Daiheng Ni and published by Springer Nature. This book was released on 2020-02-27 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the basics principles of intersection signalization including need studies, signal phasing, sequencing, timing, as well as more advanced topics such as detectors, controllers, actuated control schemes, and signal coordination. The book covers a variety of topics critical to the set up and operation of intersections controlled by traffic signals. Professor Ni imparts a basic understanding of how intersections work, what justifies intersection signalization, how to properly design phasing and timing plans for intersections, what is needed to run traffic-responsive signals, the workings of traffic controller cabinets, and how to set up signal coordination at multiple intersections—competencies essential to transportation professionals in charge of traffic operation at federal, state, and local levels. Aimed at students in transportation engineering programs with a focus on intersection signalization, the book is also ideal for researchers of traffic dynamics and municipal civil and transportation engineers.

Book Mobility and Environment Improvement of Signalized Networks Through Vehicle to Infrastructure  V2I  Communications

Download or read book Mobility and Environment Improvement of Signalized Networks Through Vehicle to Infrastructure V2I Communications written by Gerard Aguilar Ubiergo and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned each year by idling engines, releasing tons of unnecessary toxic pollutants to the atmosphere. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with numerous communication and computing devices. In this thesis, an initial comprehensive literature search is carried out on topics related to traffic flow models, connected vehicles, eco-driving, traffic signal timing, and the application of connected vehicle technologies in improving the operation of signalized networks. Then a car-following model and an emission model are combined to simulate the behavior of vehicles at signalized intersections and calculate traffic delays in queues, vehicle emissions and fuel consumption. Next, a strategy to provide mobility and environment improvements in signalized networks is presented. In this strategy, the control variable is the advisory speed limit, which is designed to smooth vehicles' speed profiles taking advantage of Vehicle-to-Intersection communication. Finally, the performance of the control system is studied depending on market penetration rate and traffic conditions, as well as communication, positioning and network characteristics. In particular, savings of around 15% in user delays and around 8% in fuel consumption and CO2 emissions are demonstrated.

Book Operation  Analysis  and Design of Signalized Intersections

Download or read book Operation Analysis and Design of Signalized Intersections written by Michael Kyte and published by Createspace Independent Publishing Platform. This book was released on 2014-07-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before they begin their university studies, most students have experience with traffic signals, as drivers, pedestrians and bicycle riders. One of the tasks of the introductory course in transportation engineering is to portray the traffic signal control system in a way that connects with these experiences. The challenge is to reveal the system in a simple enough way to allow the student "in the door," but to include enough complexity so that this process of learning about signalized intersections is both challenging and rewarding. We have approached the process of developing this module with the following guidelines: * Focusing on the automobile user and pretimed signal operation allows the student to learn about fundamental principles of a signalized intersection, while laying the foundation for future courses that address other users (pedestrians, bicycle riders, public transit operators) and more advanced traffic control schemes such as actuated control, coordinated signal systems, and adaptive control. * Queuing models are presented as a way of learning about the fundamentals of traffic flow at a signalized intersection. A graphical approach is taken so that students can see how flow profile diagrams, cumulative vehicle diagrams, and queue accumulation polygons are powerful representations of the operation and performance of a signalized intersection. * Only those equations that students can apply with some degree of understanding are presented. For example, the uniform delay equation is developed and used as a means of representing intersection performance. However, the second and third terms of the Highway Capacity Manual delay equation are not included, as students will have no basis for understanding the foundation of these terms. * Learning objectives are clearly stated at the beginning of each section so that the student knows what is to come. At the end of each section, the learning objectives are reiterated along with a set of concepts that students should understand once they complete the work in the section. * Over 70 figures are included in the module. We believe that graphically illustrating basic concepts is an important way for students to learn, particularly for queuing model concepts and the development of the change and clearance timing intervals. * Over 50 computational problems and two field exercises are provided to give students the chance to test their understanding of the material. The sequence in which concepts are presented in this module, and the way in which more complex ideas build on the more fundamental ones, was based on our study of student learning in the introductory course. The development of each concept leads to an element in the culminating activity: the design and evaluation of a signal timing plan in section 9. For example, to complete step 1 of the design process, the student must learn about the sequencing and control of movements, presented in section 3 of this module. But to determine split times, step 6 of the design process, four concepts must be learned including flow (section 2), sequencing and control of movements (section 3), sufficiency of capacity (section 6), and cycle length and splits (section 8). Depending on the pace desired by the instructor, this material can be covered in 9 to 12 class periods.

Book A Microscopic Simulation Study of Applications of Signal Phasing and Timing Information in a Connected Vehicle Environment

Download or read book A Microscopic Simulation Study of Applications of Signal Phasing and Timing Information in a Connected Vehicle Environment written by Gwamaka Njobelo and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The connected vehicle technology presents an innovative way of sharing information between vehicles and the transportation infrastructure through wireless communications. The technology can potentially solve safety, mobility, and environmental challenges that face the transportation sector. Signal phasing and timing information is one category of information that can be broadcasted through connected vehicle technology. This thesis presents an in-depth study of possible ways signal phasing and timing information can be beneficial as far as safety and mobility are concerned. In total, three studies describing this research are outlined. The first study presented herein focuses on data collection and calibration efforts of the simulation model that was used for the next two studies. The study demonstrated a genetic algorithm procedure for calibrating VISSIM discharge headways based on queue discharge headways measured in the field. Video data was used to first compute intersection discharge headways for individual vehicle queue position and then to develop statistical distributions of discharge headways for each vehicle position. Except for the 4th vehicle position, which was best fitted by the generalized extreme value (GEV) distribution, the Log-logistic distribution was observed to be the best fit distribution for the rest of vehicle positions. Starting with the default values, the VISSIM parameters responsible for determining discharge headways were heuristically adjusted to produce optimal values. The optimal solutions were achieved by minimizing the Root Mean Square Error (RMSE) between the simulated and observed data. Through calibration, for each vehicle position, it was possible to obtain the simulated headways that reflect the means of the observed field headways. However, calibration was unable to replicate the dispersion of the headways observed in the field mainly due to VISSIM limitations. Based on the findings of this study, future work on calibration in VISSIM that would account for the dispersion of mixed traffic flow characteristics is warranted. The second study addresses the potential of connected vehicles in improving safety at the vicinity of signalized intersections. Although traffic signals are installed to reduce the overall number of collisions at intersections, rear-end collisions are increased due to signalization. One dominant factor associated with rear-end crashes is the indecisiveness of the driver, especially in the dilemma zone. An advisory system to help the driver make the stop-or-pass decision would greatly improve intersection safety. This study proposed and evaluated an Advanced Stop Assist System (ASAS) at signalized intersections by using Infrastructure-to-Vehicle (I2V) and Vehicle-to-Vehicle (V2V) communication. The proposed system utilizes communication data, received from Roadside Unit (RSU), to provide drivers in approaching vehicles with vehicle-specific advisory speed messages to prevent vehicle hard-braking upon a yellow and red signal indication. A simulation test bed was modeled using VISSIM to evaluate the effectiveness of the proposed system. The results demonstrate that at full market penetration (100% saturation of vehicles equipped with on-board communication equipment), the proposed system reduces the number of hard-braking vehicles by nearly 50%. Sensitivity analyses of market penetration rates also show a degradation in safety conditions at penetration rates lower than 40%. The results suggest that at least 60% penetration rate is required for the proposed system to minimize rear-end collisions and improve safety at the signalized intersections. The last study addresses the fact that achieving smooth urban traffic flow requires reduction of excessive stop-and-go driving on urban arterials. Smooth traffic flow comes with several benefits including reduction of fuel consumption and emissions. Recently, more research efforts have been directed towards reduction of vehicle emissions. One such effort is the use of Green Light Optimal Speed Advisory (GLOSA) systems which use wireless communications to provide individual drivers with information on the approaching traffic signal phase and advisory speeds to arrive at the intersection on a green phase. Previously developed GLOSA algorithms do not address the impact of time to discharge queues formed at the intersection. Thus, this study investigated the influence of formed intersection queues on the performance of GLOSA systems. A simulation test-bed was modeled inside VISSIM to evaluate the algorithm's effectiveness. Three simulation scenarios were designed; the baseline with no GLOSA in place, scenario 2 with GLOSA activated and queue discharge time not considered, and scenario 3 with GLOSA activated and where queue dissipation time was used to compute advisory speeds. At confidence level the results show a significant reduction in the time spent in queue when GLOSA is activated (scenarios 2 and 3). The change in the average number of stops along the corridor was found not to be significant when the base scenario was compared against scenario 2. However, a comparison between scenarios 2 and 3 demonstrates a significant reduction in the average number of stops along the corridor, and also in the time spent waiting in queues.