EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Towards Integrated Pulse Detonation Propulsion and MHD Power

Download or read book Towards Integrated Pulse Detonation Propulsion and MHD Power written by Ron J. Litchford and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Download or read book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power written by R. J. Litchford and published by . This book was released on 2001 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Download or read book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-22 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction exer

Book Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

Download or read book Pulse Detonation Rocket Magnetohydrodynamic Power Experiment written by R. J. Litchford and published by . This book was released on 2003 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integrated Pulse Detonation Propulsion and Magnetohdrodynamic Power

Download or read book Integrated Pulse Detonation Propulsion and Magnetohdrodynamic Power written by R. J. Litchford and published by . This book was released on 2001 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detonation Control for Propulsion

Download or read book Detonation Control for Propulsion written by Jiun-Ming Li and published by Springer. This book was released on 2017-12-05 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Book Pulse Detonation Engine

Download or read book Pulse Detonation Engine written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2021-10-14 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Pulse Detonation Engine A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next. Theoretically, a PDE can operate from subsonic up to a hypersonic flight speed of roughly Mach 5. An ideal PDE design can have a thermodynamic efficiency higher than other designs like turbojets and turbofans because a detonation wave rapidly compresses the mixture and adds heat at constant volume. Consequently, moving parts like compressor spools are not necessarily required in the engine, which could significantly reduce overall weight and cost. PDEs have been considered for propulsion since 1940. Key issues for further development include fast and efficient mixing of the fuel and oxidizer, the prevention of autoignition, and integration with an inlet and nozzle. To date, no practical PDE has been put into production, but several testbed engines have been built and one was successfully integrated into a low-speed demonstration aircraft that flew in sustained PDE powered flight in 2008. In June 2008, the Defense Advanced Research Projects Agency (DARPA) unveiled Blackswift, which was intended to use this technology to reach speeds of up to Mach 6 How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Pulse Detonation Engine Chapter 2: Nuclear Pulse Propulsion Chapter 3: Rotating Detonation Engine Chapter 4: AIMStar Chapter 5: Antimatter-catalyzed nuclear pulse propulsion Chapter 6: Antimatter rocket Chapter 7: Nuclear electric rocket Chapter 8: Nuclear power in space Chapter 9: Nuclear propulsion Chapter 10: Nuclear thermal rocket Chapter 11: Project Pluto Chapter 12: Fission-fragment rocket (II) Answering the public top questions about pulse detonation engine. (III) Real world examples for the usage of pulse detonation engine in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technology in each industry to have 360-degree full understanding of pulse detonation engine' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of pulse detonation engine.

Book MHD Power Extraction from a Pulse Detonation Engine

Download or read book MHD Power Extraction from a Pulse Detonation Engine written by J.-L. Cambier and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of a Gas Fed Pulse Detonation Research Engine

Download or read book Development of a Gas Fed Pulse Detonation Research Engine written by R. J. Litchford and published by . This book was released on 2001 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Detonation Concepts for Propulsion and Power Generation

Download or read book New Detonation Concepts for Propulsion and Power Generation written by Eric M. Braun and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal e ciency prediction of a detonation wave based on the work and heat speci ed by process path diagrams and a control volume analysis. A combined rst and second law analysis aids in understanding performance trends for di erent initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the ow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an ori ce connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed uidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the ori ce diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the uidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston{spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave re ects o the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.

Book Future Spacecraft Propulsion Systems

Download or read book Future Spacecraft Propulsion Systems written by Claudio Bruno and published by Springer Science & Business Media. This book was released on 2009-03-20 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.

Book Combustion Processes in Propulsion

Download or read book Combustion Processes in Propulsion written by Gabriel Roy and published by Butterworth-Heinemann. This book was released on 2005-10 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. This book focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. * Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering * Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control * Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Pulse Detonation Rocket Induced MHD Ejector  PDRIME  Concept  Preprint

Download or read book The Pulse Detonation Rocket Induced MHD Ejector PDRIME Concept Preprint written by and published by . This book was released on 2008 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulse detonation engines (PDEs) have received significant attention due to their potentially superior performance over constant pressure engines. However due to the unsteady chamber pressure, the PDE system will either be over- or under-expanded for the majority of the cycle, with substantial performance loss in atmospheric flight applications. Thrust augmentation, such as PDE-ejector configurations, can potentially alleviate this problem. Here, we study the potential benefits of using Magneto-hydrodynamic (MHD) augmentation by extracting energy from a Pulse Detonation Rocket Engine (PDRE) and applying it to a separate stream. In this PDRE-MHD Ejector (PDRIME) concept, the energy extracted from a generator in the nozzle is applied directly to a by-pass air stream through an MHD accelerator. The air stream is first shocked and raised to high-temperature, allowing thermal ionization to occur after appropriate seeding. The shock-processing of the high-speed air stream is accomplished by using the high initial PDRE nozzle pressures of the under-expanded phase. Thus, energy could be efficiently transferred from one stream to another. The present simulations involve use of a simple blowdown model for PDE behavior, coupled to quasi-1D and 2D numerical simulations of flow and MHD processes in the rest of the PDRIME configuration. Results show potential performance gains but some challenges associated with achieving these gains.

Book Future Spacecraft Propulsion Systems and Integration

Download or read book Future Spacecraft Propulsion Systems and Integration written by Paul A. Czysz and published by Springer. This book was released on 2017-08-30 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: The updated and expanded third edition of this book focuses on the multi-disciplinary coupling between flight-vehicle hardware alternatives and enabling propulsion systems. It discusses how to match near-term and far-term aerospace vehicles to missions and provides a comprehensive overview of the subject, directly contributing to the next-generation space infrastructure, from space tourism to space exploration. This holistic treatment defines a mission portfolio addressing near-term to long-term space transportation needs covering sub-orbital, orbital and escape flight profiles. In this context, a vehicle configuration classification is introduced covering alternatives starting from the dawn of space access. A best-practice parametric sizing approach is introduced to correctly design the flight vehicle for the mission. This technique balances required mission with the available vehicle solution space and is an essential capability sought after by technology forecasters and strategic planners alike.

Book 29th Plasmadynamics and Lasers Conference

Download or read book 29th Plasmadynamics and Lasers Conference written by and published by . This book was released on 1998 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Influence of Ignition Energy  Ignition Location  and Stoichiometry on the Deflagration to  Detonation Distance in A Pulse Detonation Engine

Download or read book Influence of Ignition Energy Ignition Location and Stoichiometry on the Deflagration to Detonation Distance in A Pulse Detonation Engine written by John P. Robinson and published by . This book was released on 2000-06 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: The feasibility of utilizing detonations for air-breathing propulsion is the subject of a significant research effort headed by the Office of Naval Research. Pulse Detonation Engines (PDE) have a theoretically greater efficiency than current combustion cycles. However, pulse detonation technology must mature beginning with research in the fundamental process of developing a detonation wave. This thesis explores various ignition conditions which minimize the deflagration-to- detonation transition distance (Xddt) of a single detonation wave in a gaseous mixture.