Download or read book AI for Health Equity and Fairness written by Arash Shaban-Nejad and published by Springer Nature. This book was released on with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical AI Ethics Integrating Ethical Principles into Machine Learning Projects written by Peter Jones and published by Walzone Press. This book was released on 2024-10-11 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Practical AI Ethics: Integrating Ethical Principles into Machine Learning Projects" is an essential resource for AI professionals, policymakers, and academics dedicated to embedding ethical practices within the rapidly evolving field of machine learning. This comprehensive guide tackles some of the most pressing ethical challenges, including transparency, bias, privacy, fairness, and compliance, offering clear and actionable strategies for addressing these issues in AI systems. Written in a practical and solution-oriented style, the book simplifies complex ethical concepts, providing readers with advanced tools, practical frameworks, and insightful case studies to guide the ethical integration of AI in real-world projects. From minimizing the environmental impact of AI to safeguarding human rights and navigating regulatory landscapes, this book equips readers to take on the ethical challenges of AI with confidence. By engaging with *"Practical AI Ethics: Integrating Ethical Principles into Machine Learning Projects,"* readers will gain the knowledge and skills to lead the charge in promoting fairness, accountability, and transparency in AI. It is a must-read for anyone committed to shaping a responsible, ethical future for AI innovation.
Download or read book Deep Learning Concepts in Operations Research written by Biswadip Basu Mallik and published by CRC Press. This book was released on 2024-08-30 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The model-based approach for carrying out classification and identification of tasks has led to the pervading progress of the machine learning paradigm in diversified fields of technology. Deep Learning Concepts in Operations Research looks at the concepts that are the foundation of this model-based approach. Apart from the classification process, the machine learning (ML) model has become effective enough to predict future trends of any sort of phenomena. Such fields as object classification, speech recognition, and face detection have sought extensive application of artificial intelligence (AI) and ML as well. Among a variety of topics, the book examines: An overview of applications and computing devices Deep learning impacts in the field of AI Deep learning as state-of-the-art approach to AI Exploring deep learning architecture for cutting-edge AI solutions Operations research is the branch of mathematics for performing many operational tasks in other allied domains, and the book explains how the implementation of automated strategies in optimization and parameter selection can be carried out by AI and ML. Operations research has many beneficial aspects for decision making. Discussing how a proper decision depends on several factors, the book examines how AI and ML can be used to model equations and define constraints to solve problems and discover proper and valid solutions more easily. It also looks at how automation plays a significant role in minimizing human labor and thereby minimizes overall time and cost.
Download or read book Research Anthology on Privatizing and Securing Data written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-04-23 with total page 2188 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.
Download or read book Practical Applications of Data Processing Algorithms and Modeling written by Whig, Pawan and published by IGI Global. This book was released on 2024-04-29 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today's data-driven era, the persistent gap between theoretical understanding and practical implementation in data science poses a formidable challenge. As we navigate through the complexities of harnessing data, deciphering algorithms, and unleashing the potential of modeling techniques, the need for a comprehensive guide becomes increasingly evident. This is the landscape explored in Practical Applications of Data Processing, Algorithms, and Modeling. This book is a solution to the pervasive problem faced by aspiring data scientists, seasoned professionals, and anyone fascinated by the power of data-driven insights. From the web of algorithms to the strategic role of modeling in decision-making, this book is an effective resource in a landscape where data, without proper guidance, risks becoming an untapped resource. The objective of Practical Applications of Data Processing, Algorithms, and Modeling is to address the pressing issue at the heart of data science – the divide between theory and practice. This book seeks to examine the complexities of data processing techniques, algorithms, and modeling methodologies, offering a practical understanding of these concepts. By focusing on real-world applications, the book provides readers with the tools and knowledge needed to bridge the gap effectively, allowing them to apply these techniques across diverse industries and domains. In the face of constant technological advancements, the book highlights the latest trends and innovative approaches, fostering a deeper comprehension of how these technologies can be leveraged to solve complex problems. As a practical guide, it empowers readers with hands-on examples, case studies, and problem-solving scenarios, aiming to instill confidence in navigating data challenges and making informed decisions using data-driven insights.
Download or read book Essential Federated Learning written by Robert Johnson and published by HiTeX Press. This book was released on 2024-10-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Essential Federated Learning: AI at the Edge" offers a comprehensive exploration into the transformative domain of federated learning, an innovative approach reshaping the AI landscape by enabling data decentralization. This book demystifies the foundational concepts of federated learning, capturing its potential to increase privacy, enhance data security, and empower industries across sectors such as healthcare, finance, and beyond. By keeping data localized, federated learning minimizes privacy concerns while leveraging the power and capability of edge computing. Each chapter meticulously builds upon the last, guiding readers from basic principles to advanced applications, providing a balanced understanding of technical architectures, algorithms, and real-world implementations. Rich with insights into the ethical and social implications of federated learning, this book addresses the pressing challenges and future directions that are critical for its evolution. Topics such as privacy preservation, bias mitigation, and regulatory compliance are thoroughly examined, offering a holistic view of how federated learning can be applied responsibly and effectively. Whether you're a researcher, practitioner, or policy-maker, "Essential Federated Learning: AI at the Edge" offers the essential knowledge needed to harness the advantages of this cutting-edge technology, ensuring readers are well-equipped to navigate the rapidly expanding landscape of AI and edge computing.
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Download or read book Machine Learning for Healthcare written by Rasit Dinc and published by Troubador Publishing Ltd. This book was released on 2024-07-23 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by a leading voice in the field, Machine Learning for Healthcare provides a gateway to revolutionize the understanding of medicine and patient care. The book unlocks the secrets of clinical data, harnessing the power of machine learning to diagnose diseases with unprecedented accuracy, and predicting patient outcomes with confidence. From the intricacies of disease progression to the human factors shaping healthcare delivery, each chapter is a testament to the transformative potential of AI in medicine. Readers include anyone passionate about the intersection of technology and human well-being from healthcare professionals eager to stay ahead of the curve, to bystanders fascinated by the possibilities of AI.
Download or read book Federated Learning for Smart Communication using IoT Application written by Kaushal Kishor and published by CRC Press. This book was released on 2024-10-30 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effectiveness of federated learning in high‐performance information systems and informatics‐based solutions for addressing current information support requirements is demonstrated in this book. To address heterogeneity challenges in Internet of Things (IoT) contexts, Federated Learning for Smart Communication using IoT Application analyses the development of personalized federated learning algorithms capable of mitigating the detrimental consequences of heterogeneity in several dimensions. It includes case studies of IoT‐based human activity recognition to show the efficacy of personalized federated learning for intelligent IoT applications. Features: • Demonstrates how federated learning offers a novel approach to building personalized models from data without invading users’ privacy. • Describes how federated learning may assist in understanding and learning from user behavior in IoT applications while safeguarding user privacy. • Presents a detailed analysis of current research on federated learning, providing the reader with a broad understanding of the area. • Analyses the need for a personalized federated learning framework in cloud‐edge and wireless‐edge architecture for intelligent IoT applications. • Comprises real‐life case illustrations and examples to help consolidate understanding of topics presented in each chapter. This book is recommended for anyone interested in federated learning‐based intelligent algorithms for smart communications.
Download or read book Machine Learning written by and published by . This book was released on 2017 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book AI Driven Innovations written by Rohan Singh Rajput and published by Cari Journals USA LLC. This book was released on 2024-03-06 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: TOPICS IN THE BOOK Proactive Edge Computing for Smart City: A Novel Case for ML-Powered IoT From Data to Decisions: Enhancing Retail with AI and Machine Learning Commercial Mobile Alert System LTE & 5G Network Optimization Harnessing the Power of AI for Enhanced Regulatory Compliance and Risk Management in Fintech
Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Download or read book Introduction to Digital Humanism written by Hannes Werthner and published by Springer Nature. This book was released on 2024-01-21 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook introduces and defines digital humanism from a diverse range of disciplines. Following the 2019 Vienna Manifesto, the book calls for a digital humanism that describes, analyzes, and, most importantly, influences the complex interplay of technology and humankind, for a better society and life, fully respecting universal human rights. The book is organized in three parts: Part I “Background” provides the multidisciplinary background needed to understand digital humanism in its philosophical, cultural, technological, historical, social, and economic dimensions. The goal is to present the necessary knowledge upon which an effective interdisciplinary discourse on digital humanism can be founded. Part II “Digital Humanism – a System’s View” focuses on an in-depth presentation and discussion of the main digital humanism concerns arising in current digital systems. The goal of this part is to make readers aware and sensitive to these issues, including e.g. the control and autonomy of AI systems, privacy and security, and the role of governance. Part III “Critical and Societal Issues of Digital Systems” delves into critical societal issues raised by advances of digital technologies. While the public debate in the past has often focused on them separately, especially when they became visible through sensational events the aim here is to shed light on the entire landscape and show their interconnected relationships. This includes issues such as AI and ethics, fairness and bias, privacy and surveillance, platform power and democracy. This textbook is intended for students, teachers, and policy makers interested in digital humanism. It is designed for stand-alone and for complementary courses in computer science, or curricula in science, engineering, humanities and social sciences. Each chapter includes questions for students and an annotated reading list to dive deeper into the associated chapter material. The book aims to provide readers with as wide an exposure as possible to digital advances and their consequences for humanity. It includes constructive ideas and approaches that seek to ensure that our collective digital future is determined through human agency.
Download or read book Research Anthology on Artificial Intelligence Applications in Security written by Management Association, Information Resources and published by IGI Global. This book was released on 2020-11-27 with total page 2253 pages. Available in PDF, EPUB and Kindle. Book excerpt: As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.
Download or read book WIPO Technology Trends 2019 Artificial Intelligence written by World Intellectual Property Organization and published by WIPO. This book was released on 2019-01-21 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first report in a new flagship series, WIPO Technology Trends, aims to shed light on the trends in innovation in artificial intelligence since the field first developed in the 1950s.
Download or read book Computation of Artificial Intelligence and Machine Learning written by Amit Kumar Bairwa and published by Springer Nature. This book was released on with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals Schr dinger s Equation to Deep Learning written by N.B. Singh and published by N.B. Singh. This book was released on with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Focusing on the journey from understanding Schrödinger's Equation to exploring the depths of Deep Learning, this book serves as a comprehensive guide for absolute beginners with no mathematical backgrounds. Starting with fundamental concepts in quantum mechanics, the book gradually introduces readers to the intricacies of Schrödinger's Equation and its applications in various fields. With clear explanations and accessible language, readers will delve into the principles of quantum mechanics and learn how they intersect with modern technologies such as Deep Learning. By bridging the gap between theoretical physics and practical applications, this book equips readers with the knowledge and skills to navigate the fascinating world of quantum mechanics and embark on the exciting journey of Deep Learning."