EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topology and Approximate Fixed Points

Download or read book Topology and Approximate Fixed Points written by Afif Ben Amar and published by Springer Nature. This book was released on 2022-01-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines in detail approximate fixed point theory in different classes of topological spaces for general classes of maps. It offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods, for a wide variety of topologies and maps. Content includes known and recent results in topology (with proofs), as well as recent results in approximate fixed point theory. This work starts with a set of basic notions in topological spaces. Special attention is given to topological vector spaces, locally convex spaces, Banach spaces, and ultrametric spaces. Sequences and function spaces—and fundamental properties of their topologies—are also covered. The reader will find discussions on fundamental principles, namely the Hahn-Banach theorem on extensions of linear (bounded) functionals; the Banach open mapping theorem; the Banach-Steinhaus uniform boundedness principle; and Baire categories, including some applications. Also included are weak topologies and their properties, in particular the theorems of Eberlein-Smulian, Goldstine, Kakutani, James and Grothendieck, reflexive Banach spaces, l_{1}- sequences, Rosenthal's theorem, sequential properties of the weak topology in a Banach space and weak* topology of its dual, and the Fréchet-Urysohn property. The subsequent chapters cover various almost fixed point results, discussing how to reach or approximate the unique fixed point of a strictly contractive mapping of a spherically complete ultrametric space. They also introduce synthetic approaches to fixed point problems involving regular-global-inf functions. The book finishes with a study of problems involving approximate fixed point property on an ambient space with different topologies. By providing appropriate background and up-to-date research results, this book can greatly benefit graduate students and mathematicians seeking to advance in topology and fixed point theory.

Book Iterative Approximation of Fixed Points

Download or read book Iterative Approximation of Fixed Points written by Vasile Berinde and published by Springer. This book was released on 2007-04-20 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives an introductory treatment of the most important iterative methods for constructing fixed points of nonlinear contractive type mappings. For each iterative method considered, it summarizes the most significant contributions in the area by presenting some of the most relevant convergence theorems. It also presents applications to the solution of nonlinear operator equations as well as the appropriate error analysis of the main iterative methods.

Book Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications

Download or read book Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications written by Afif Ben Amar and published by Springer. This book was released on 2016-05-04 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein–Šmulian, Grothendick and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford–Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray–Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi–Pera, and Krasnoselskii fixed point theorems and nonlinear Leray–Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray–Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors.

Book Topological Fixed Point Theory of Multivalued Mappings

Download or read book Topological Fixed Point Theory of Multivalued Mappings written by Lech Górniewicz and published by Springer Science & Business Media. This book was released on 2006-06-03 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.

Book Advanced Fixed Point Theory for Economics

Download or read book Advanced Fixed Point Theory for Economics written by Andrew McLennan and published by Springer. This book was released on 2018-07-03 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the central aspect of fixed point theory – the topological fixed point index – to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems. The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs. Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.

Book Fixed Point Theory and Graph Theory

Download or read book Fixed Point Theory and Graph Theory written by Monther Alfuraidan and published by Academic Press. This book was released on 2016-06-20 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. - Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments - Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach - Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications

Book Approximate Fixed Points of Nonexpansive Mappings

Download or read book Approximate Fixed Points of Nonexpansive Mappings written by Alexander J. Zaslavski and published by Springer Nature. This book was released on with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Topological Fixed Point Theory

Download or read book Handbook of Topological Fixed Point Theory written by Robert F. Brown and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 966 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.

Book Fixed Point Theorems and Applications

Download or read book Fixed Point Theorems and Applications written by Vittorino Pata and published by Springer Nature. This book was released on 2019-09-22 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory, and game theory. A final section containing 50 problems, many of which include helpful hints, rounds out the coverage. Intended for Master’s and PhD students in Mathematics or, more generally, mathematically oriented subjects, the book is designed to be largely self-contained, although some mathematical background is needed: readers should be familiar with measure theory, Banach and Hilbert spaces, locally convex topological vector spaces and, in general, with linear functional analysis.

Book An Introduction to Metric Spaces and Fixed Point Theory

Download or read book An Introduction to Metric Spaces and Fixed Point Theory written by Mohamed A. Khamsi and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.

Book Handbook of Metric Fixed Point Theory

Download or read book Handbook of Metric Fixed Point Theory written by W.A. Kirk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.

Book Topics in Metric Fixed Point Theory

Download or read book Topics in Metric Fixed Point Theory written by Kazimierz Goebel and published by Cambridge University Press. This book was released on 1990 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.

Book Topological Fixed Point Theory of Multivalued Mappings

Download or read book Topological Fixed Point Theory of Multivalued Mappings written by Lech Górniewicz and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an attempt to give a systematic presentation of results and meth ods which concern the fixed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to study ing topological methods in the fixed point theory of multivalued mappings and applications, mainly to differential inclusions. Thus in Chapter III the approximation (on the graph) method in fixed point theory of multi valued mappings is presented. Chapter IV is devoted to the homo logical methods and contains more general results, e. g. , the Lefschetz Fixed Point Theorem, the fixed point index and the topological degree theory. In Chapter V applications to some special problems in fixed point theory are formulated. Then in the last chapter a direct application's to differential inclusions are presented. Note that Chapter I and Chapter II have an auxiliary character, and only results con nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the fixed point theory. In the last section of our book (see Section 75) we give a bibliographical guide and also signal some further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and com mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. Gorka, M. Gorniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph.

Book Topological Methods for Ordinary Differential Equations

Download or read book Topological Methods for Ordinary Differential Equations written by Patrick Fitzpatrick and published by Springer. This book was released on 2006-11-14 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems.

Book Algorithms for Solving Common Fixed Point Problems

Download or read book Algorithms for Solving Common Fixed Point Problems written by Alexander J. Zaslavski and published by Springer. This book was released on 2018-05-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.

Book Encyclopedia of General Topology

Download or read book Encyclopedia of General Topology written by K.P. Hart and published by Elsevier. This book was released on 2003-11-18 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms

Book Fixed Point Theory and Applications

Download or read book Fixed Point Theory and Applications written by Yeol Je Cho and published by Nova Publishers. This book was released on 2007-08 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory, difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.