EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topological Nodal line Fermions in Spin orbit Metal PbTaSe2

Download or read book Topological Nodal line Fermions in Spin orbit Metal PbTaSe2 written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.

Book Linear Electrodynamic Response of Topological Semimetals

Download or read book Linear Electrodynamic Response of Topological Semimetals written by Artem V. Pronin and published by Springer Nature. This book was released on 2023-08-17 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a model description for the electromagnetic response of topological nodal semimetals and summarizes recent experimental findings in these systems. Specifically, it discusses various types of topological semimetals – Dirac, Weyl, nodal-line, triple-point, and multifold semimetals – and provides description for the characteristic features of the linear electrodynamic response for all these types of materials. Topological semimetals possess peculiar bulk electronic band structure, which leads to unusual electrodynamic response. For example, the low-energy inter-band optical conductivity of nodal semimetals is supposed to demonstrate power-law frequency dependence and the intra- and inter-band contributions to the conductivity are often mixed. Further, the magneto-optical response is also unusual, because of the non-equidistant spacing between the Landau levels. Finally, in semimetals with chiral electronic bands, e.g. in Weyl semimetals, the simultaneous application of parallel magnetic and electric fields leads to the chiral anomaly, i.e. to a misbalance between the electrons with diffident chiralities. This misbalance affects the electrodynamics properties of the material and can be detected optically. All these points are addressed here in detail. The book is written for a wide audience of physicists, working in the field of topological condensed matter physics. It gives a pedagogical introduction enabling graduate students and non-experts to familiarize themselves with the subject.

Book Electronic Properties of Rhombohedral Graphite

Download or read book Electronic Properties of Rhombohedral Graphite written by Servet Ozdemir and published by Springer Nature. This book was released on 2021-10-25 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the first systematic electron transport investigation of rhombohedral graphite (RG) films and thus lies at the interface of graphene physics, vdW heterostructure devices and topological matter. Electron transport investigation into the rhombohedral phase of graphite was limited to a few layers of graphene due to the competing hexagonal phase being more abundant. This work reports that in exfoliated natural graphite films, rhombohedral domains of up to 50 layers can be found. In the low energy limit, these domains behave as an N-layer generalisation of graphene. Moreover, being a potential alternative to twisted bilayer graphene systems, RG films show a spontaneous metal-insulator transition, with characteristic symmetry properties that could be described by mean-field theory where superconductivity is also predicted in these low energy bands. A nodal-line semimetal in the bulk limit, RG thin films are a 3D generalisation of the simplest topological insulator model: the Su-Schrieffer-Heeger chain. Similar to the more usual topological insulators, RG films exhibit parallel conduction of bulk states, which undergo three-dimensional quantum transport that reflects bulk topology.

Book 2D Semiconductor Materials and Devices

Download or read book 2D Semiconductor Materials and Devices written by Dongzhi Chi and published by Elsevier. This book was released on 2019-10-19 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications. Reviews a broad range of emerging 2D electronic materials beyond graphene, including silicene, phosphorene and compound semiconductors Provides an in-depth review of material properties, growth and characterization aspects—topics that could enable applications Features contributions from the leading experts in the field

Book Optical and Electrical Properties of Nanoscale Materials

Download or read book Optical and Electrical Properties of Nanoscale Materials written by Alain Diebold and published by Springer Nature. This book was released on 2022-01-10 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the optical and electrical properties of nanoscale materials with an emphasis on how new and unique material properties result from the special nature of their electronic band structure. Beginning with a review of the optical and solid state physics needed for understanding optical and electrical properties, the book then introduces the electronic band structure of solids and discusses the effect of spin orbit coupling on the valence band, which is critical for understanding the optical properties of most nanoscale materials. Excitonic effects and excitons are also presented along with their effect on optical absorption. 2D materials, such as graphene and transition metal dichalcogenides, are host to unique electrical properties resulting from the electronic band structure. This book devotes significant attention to the optical and electrical properties of 2D and topological materials with an emphasis on optical measurements, electrical characterization of carrier transport, and a discussion of the electronic band structures using a tight binding approach. This book succinctly compiles useful fundamental and practical information from one of the fastest growing research topics in materials science and is thus an essential compendium for both students and researchers in this rapidly moving field.

Book The Universe in a Helium Droplet

Download or read book The Universe in a Helium Droplet written by G. E. Volovik and published by Oxford University Press on Demand. This book was released on 2003-03-06 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a general overview of analogies between phenomena in condensed matter physics and quantum field theory and elementary particle physics.

Book The Hall Effect in Metals and Alloys

Download or read book The Hall Effect in Metals and Alloys written by Colin Hurd and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: I hope this book will be useful to at least two groups of individuals: the nonspecialist reader with a general knowledge of solid-state science and seeking an introduction to the theory and practice of the Hall effect in metals, and the specialist seeking a contemporary review of the relevant literature. The literature has been surveyed thoroughly up to the middle of 1970, while the more accessible journals have been followed to late 1970. I have been selective in cases where there is a great volume of literature, particu larly in the case of old or obscure measurements of low accuracy, but in all cases I have tried to present the reader with sufficient information to judge whether a particular reference matches his interest and is therefore worth tracing. I compiled the book from reading the original publications, but inevitably there will be errors arising in transcription or inadvertent omissions. I hope the reader finding these will be charitable enough to write to me. lt is a pleasure to acknowledge the numerous useful discussions I have had at various times with associates and colleagues, particularly Drs. Mme M. T. Beal-Monod, J. E. A. Alderson, R. D. Barnard, T. Farrell, and P. Monod. Their influence appears at various points in the text-although, of course, they must not be held responsible for anything I have written.

Book Density Waves In Solids

Download or read book Density Waves In Solids written by George Gruner and published by CRC Press. This book was released on 2018-03-08 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: ?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.

Book The Role of Topology in Materials

Download or read book The Role of Topology in Materials written by Sanju Gupta and published by . This book was released on 2018 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.

Book Photoelectron Spectroscopy

    Book Details:
  • Author : Stefan Hüfner
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 3662031507
  • Pages : 525 pages

Download or read book Photoelectron Spectroscopy written by Stefan Hüfner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date introduction to the field, treating in depth the electronic structures of atoms, molecules, solids and surfaces, together with brief descriptions of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout and the results carefully interpreted by theory. A wealth of measured data is presented in tabullar for easy use by experimentalists.

Book Analogue Gravity Phenomenology

Download or read book Analogue Gravity Phenomenology written by Daniele Faccio and published by Springer. This book was released on 2013-08-13 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analogue Gravity Phenomenology is a collection of contributions that cover a vast range of areas in physics, ranging from surface wave propagation in fluids to nonlinear optics. The underlying common aspect of all these topics, and hence the main focus and perspective from which they are explained here, is the attempt to develop analogue models for gravitational systems. The original and main motivation of the field is the verification and study of Hawking radiation from a horizon: the enabling feature is the possibility to generate horizons in the laboratory with a wide range of physical systems that involve a flow of one kind or another. The years around 2010 and onwards witnessed a sudden surge of experimental activity in this expanding field of research. However, building an expertise in analogue gravity requires the researcher to be equipped with a rather broad range of knowledge and interests. The aim of this book is to bring the reader up to date with the latest developments and provide the basic background required in order to appreciate the goals, difficulties, and success stories in the field of analogue gravity. Each chapter of the book treats a different topic explained in detail by the major experts for each specific discipline. The first chapters give an overview of black hole spacetimes and Hawking radiation before moving on to describe the large variety of analogue spacetimes that have been proposed and are currently under investigation. This introductory part is then followed by an in-depth description of what are currently the three most promising analogue spacetime settings, namely surface waves in flowing fluids, acoustic oscillations in Bose-Einstein condensates and electromagnetic waves in nonlinear optics. Both theory and experimental endeavours are explained in detail. The final chapters refer to other aspects of analogue gravity beyond the study of Hawking radiation, such as Lorentz invariance violations and Brownian motion in curved spacetimes, before concluding with a return to the origins of the field and a description of the available observational evidence for horizons in astrophysical black holes.

Book Magnetic Oscillations in Metals

Download or read book Magnetic Oscillations in Metals written by D. Shoenberg and published by Cambridge University Press. This book was released on 2009-09-03 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is just over 80 years ago that a striking oscillatory field dependence was discovered in the magnetic behaviour of bismuth at low temperatures. This book was first published in 1984 and gives a systematic account of the nature of the oscillations, of the experimental techniques for their study and of their connection with the electronic structure of the metal concerned. Although the main emphasis is on the oscillations themselves and their many peculiarities, rather than on the theory of the electronic structure they reveal, sufficient examples are given in detail to illustrate the kind of information that has been obtained and how this information agrees with theoretical prediction.

Book Advanced Topological Insulators

Download or read book Advanced Topological Insulators written by Huixia Luo and published by John Wiley & Sons. This book was released on 2019-03-12 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Book Theory Of Superconductivity

Download or read book Theory Of Superconductivity written by J. Robert Schrieffer and published by CRC Press. This book was released on 2018-03-05 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.

Book Field Theories of Condensed Matter Physics

Download or read book Field Theories of Condensed Matter Physics written by Eduardo Fradkin and published by Cambridge University Press. This book was released on 2013-02-28 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

Book Magnetic Materials

Download or read book Magnetic Materials written by Nicola A. Spaldin and published by Cambridge University Press. This book was released on 2010-08-19 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Materials is an excellent introduction to the basics of magnetism, magnetic materials and their applications in modern device technologies. Retaining the concise style of the original, this edition has been thoroughly revised to address significant developments in the field, including the improved understanding of basic magnetic phenomena, new classes of materials, and changes to device paradigms. With homework problems, solutions to selected problems and a detailed list of references, Magnetic Materials continues to be the ideal book for a one-semester course and as a self-study guide for researchers new to the field. New to this edition: • Entirely new chapters on Exchange Bias Coupling, Multiferroic and Magnetoelectric Materials, Magnetic Insulators • Revised throughout, with substantial updates to the chapters on Magnetic Recording and Magnetic Semiconductors, incorporating the latest advances in the field • New example problems with worked solutions

Book Ultracold Quantum Fields

Download or read book Ultracold Quantum Fields written by Henk T. C. Stoof and published by Springer Science & Business Media. This book was released on 2008-11-30 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master’s sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master’s programme in Theoret ical Physics which started running in the summer of 2000. At present, the master’s programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master’s programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.