EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topological Methods in Data Analysis and Visualization III

Download or read book Topological Methods in Data Analysis and Visualization III written by Peer-Timo Bremer and published by Springer Science & Business. This book was released on 2014-04-22 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world’s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine.

Book Topological Methods in Data Analysis and Visualization

Download or read book Topological Methods in Data Analysis and Visualization written by Valerio Pascucci and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology-based methods are of increasing importance in the analysis and visualization of datasets from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation of large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. . The editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. This book contains the best 20 peer-reviewed papers resulting from the discussions and presentations at the third workshop on "Topological Methods in Data Analysis and Visualization", held 2009 in Snowbird, Utah, US. The 2009 "TopoInVis" workshop follows the two successful workshops in 2005 (Slovakia) and 2007 (Germany).

Book Topological Methods in Data Analysis and Visualization IV

Download or read book Topological Methods in Data Analysis and Visualization IV written by Hamish Carr and published by Springer. This book was released on 2017-06-01 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contributions on topics ranging from novel applications of topological analysis for particular problems, through studies of the effectiveness of modern topological methods, algorithmic improvements on existing methods, and parallel computation of topological structures, all the way to mathematical topologies not previously applied to data analysis. Topological methods are broadly recognized as valuable tools for analyzing the ever-increasing flood of data generated by simulation or acquisition. This is particularly the case in scientific visualization, where the data sets have long since surpassed the ability of the human mind to absorb every single byte of data. The biannual TopoInVis workshop has supported researchers in this area for a decade, and continues to serve as a vital forum for the presentation and discussion of novel results in applications in the area, creating a platform to disseminate knowledge about such implementations throughout and beyond the community. The present volume, resulting from the 2015 TopoInVis workshop held in Annweiler, Germany, will appeal to researchers in the fields of scientific visualization and mathematics, domain scientists with an interest in advanced visualization methods, and developers of visualization software systems.

Book Topological Methods in Data Analysis and Visualization VI

Download or read book Topological Methods in Data Analysis and Visualization VI written by Ingrid Hotz and published by Springer Nature. This book was released on 2021-09-28 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nyköping, Sweden. The workshop regularly gathers some of the world’s leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.

Book Topological Methods in Data Analysis and Visualization V

Download or read book Topological Methods in Data Analysis and Visualization V written by Hamish Carr and published by Springer Nature. This book was released on 2020-12-10 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of peer-reviewed workshop papers provides comprehensive coverage of cutting-edge research into topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The book also addresses core research challenges such as the representation of large and complex datasets, and integrating numerical methods with robust combinatorial algorithms. In keeping with the focus of the TopoInVis 2017 Workshop, the contributions reflect the latest advances in finding experimental solutions to open problems in the sector. They provide an essential snapshot of state-of-the-art research, helping researchers to keep abreast of the latest developments and providing a basis for future work. Gathering papers by some of the world’s leading experts on topological techniques, the book represents a valuable contribution to a field of growing importance, with applications in disciplines ranging from engineering to medicine.

Book Topological Data Analysis for Scientific Visualization

Download or read book Topological Data Analysis for Scientific Visualization written by Julien Tierny and published by Springer. This book was released on 2018-01-16 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.

Book Computational Topology for Data Analysis

Download or read book Computational Topology for Data Analysis written by Tamal Krishna Dey and published by Cambridge University Press. This book was released on 2022-03-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Book Topology Based Methods in Visualization II

Download or read book Topology Based Methods in Visualization II written by Hans-Christian Hege and published by Springer Science & Business Media. This book was released on 2009-02-07 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visualization research aims to provide insight into large, complicated data sets and the phenomena behind them. While there are di?erent methods of reaching this goal, topological methods stand out for their solid mathem- ical foundation, which guides the algorithmic analysis and its presentation. Topology-based methods in visualization have been around since the beg- ning of visualization as a scienti?c discipline, but they initially played only a minor role. In recent years,interest in topology-basedvisualization has grown andsigni?cantinnovationhasledto newconceptsandsuccessfulapplications. The latest trends adapt basic topological concepts to precisely express user interests in topological properties of the data. This book is the outcome of the second workshop on Topological Methods in Visualization, which was held March 4–6, 2007 in Kloster Nimbschen near Leipzig,Germany.Theworkshopbroughttogethermorethan40international researchers to present and discuss the state of the art and new trends in the ?eld of topology-based visualization. Two inspiring invited talks by George Haller, MIT, and Nelson Max, LLNL, were accompanied by 14 presentations by participants and two panel discussions on current and future trends in visualization research. This book contains thirteen research papers that have been peer-reviewed in a two-stage review process. In the ?rst phase, submitted papers where peer-reviewed by the international program committee. After the workshop accepted papers went through a revision and a second review process taking into account comments from the ?rst round and discussions at the workshop. Abouthalfthepapersconcerntopology-basedanalysisandvisualizationof ?uid?owsimulations;twopapersconcernmoregeneraltopologicalalgorithms, while the remaining papers discuss topology-based visualization methods in application areas like biology, medical imaging and electromagnetism.

Book Topological Methods in Data Analysis and Visualization II

Download or read book Topological Methods in Data Analysis and Visualization II written by Ronald Peikert and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: When scientists analyze datasets in a search for underlying phenomena, patterns or causal factors, their first step is often an automatic or semi-automatic search for structures in the data. Of these feature-extraction methods, topological ones stand out due to their solid mathematical foundation. Topologically defined structures—as found in scalar, vector and tensor fields—have proven their merit in a wide range of scientific domains, and scientists have found them to be revealing in subjects such as physics, engineering, and medicine. Full of state-of-the-art research and contemporary hot topics in the subject, this volume is a selection of peer-reviewed papers originally presented at the fourth Workshop on Topology-Based Methods in Data Analysis and Visualization, TopoInVis 2011, held in Zurich, Switzerland. The workshop brought together many of the leading lights in the field for a mixture of formal presentations and discussion. One topic currently generating a great deal of interest, and explored in several chapters here, is the search for topological structures in time-dependent flows, and their relationship with Lagrangian coherent structures. Contributors also focus on discrete topologies of scalar and vector fields, and on persistence-based simplification, among other issues of note. The new research results included in this volume relate to all three key areas in data analysis—theory, algorithms and applications.

Book Persistence Theory  From Quiver Representations to Data Analysis

Download or read book Persistence Theory From Quiver Representations to Data Analysis written by Steve Y. Oudot and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Book Topology based Methods in Visualization

Download or read book Topology based Methods in Visualization written by Helwig Hauser and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 13 peer-reviewed papers as written results from the 2005 workshop "Topology-Based Methods in Visualization" that was initiated to enable additional stimulation in this field. It contains a survey of the state-of-the-art, as well original work by leading experts that has not been published before, spanning both theory and applications. It captures key concepts and novel ideas and serves as an overview of current trends in its subject.

Book Topological Modeling for Visualization

Download or read book Topological Modeling for Visualization written by Anatolij T. Fomenko and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: The flood of information through various computer networks such as the In ternet characterizes the world situation in which we live. Information worlds, often called virtual spaces and cyberspaces, have been formed on computer networks. The complexity of information worlds has been increasing almost exponentially through the exponential growth of computer networks. Such nonlinearity in growth and in scope characterizes information worlds. In other words, the characterization of nonlinearity is the key to understanding, utiliz ing and living with the flood of information. The characterization approach is by characteristic points such as peaks, pits, and passes, according to the Morse theory. Another approach is by singularity signs such as folds and cusps. Atoms and molecules are the other fundamental characterization ap proach. Topology and geometry, including differential topology, serve as the framework for the characterization. Topological Modeling for Visualization is a textbook for those interested in this characterization, to understand what it is and how to do it. Understanding is the key to utilizing information worlds and to living with the changes in the real world. Writing this textbook required careful preparation by the authors. There are complex mathematical concepts that require designing a writing style that facilitates understanding and appeals to the reader. To evolve a style, we set as a main goal of this book the establishment of a link between the theoretical aspects of modern geometry and topology, on the one hand, and experimental computer geometry, on the other.

Book Topological and Statistical Methods for Complex Data

Download or read book Topological and Statistical Methods for Complex Data written by Janine Bennett and published by Springer. This book was released on 2014-11-19 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the management, analysis, and visualization of complex data. It covers both theory and application and provides readers with an overview of important key concepts and the latest research trends. Coverage in the book includes multi-variate and/or high-dimensional analysis techniques, feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms, scalar and vector field topology, and multi-scale representations. In addition, the book details algorithms that are broadly applicable and can be used by application scientists to glean insight from a wide range of complex data sets.

Book Geometric and Topological Inference

Download or read book Geometric and Topological Inference written by Jean-Daniel Boissonnat and published by Cambridge University Press. This book was released on 2018-09-27 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.

Book Mathematical Software    ICMS 2014

Download or read book Mathematical Software ICMS 2014 written by Hoon Hong and published by Springer. This book was released on 2014-08-01 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 4th International Conference on Mathematical Software, ICMS 2014, held in Seoul, South Korea, in August 2014. The 108 papers included in this volume were carefully reviewed and selected from 150 submissions. The papers are organized in topical sections named: invited; exploration; group; coding; topology; algebraic; geometry; surfaces; reasoning; special; Groebner; triangular; parametric; interfaces and general.

Book Topological Analysis

    Book Details:
  • Author : Gordon Thomas Whyburn
  • Publisher : Princeton University Press
  • Release : 2015-12-08
  • ISBN : 1400879337
  • Pages : 138 pages

Download or read book Topological Analysis written by Gordon Thomas Whyburn and published by Princeton University Press. This book was released on 2015-12-08 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological analysis consists of those basic theorems of analysis which are essentially topological in character, developed and proved entirely by topological and pseudotopological methods. The objective of this volume is the promotion, encouragement, and stimulation of the interaction between topology and analysis-to the benefit of both. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Book Computational Topology

    Book Details:
  • Author : Herbert Edelsbrunner
  • Publisher : American Mathematical Soc.
  • Release : 2010
  • ISBN : 0821849255
  • Pages : 256 pages

Download or read book Computational Topology written by Herbert Edelsbrunner and published by American Mathematical Soc.. This book was released on 2010 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.