Download or read book Dynamics of Transcendental Functions written by Xin-Hou Hua and published by Routledge. This book was released on 2019-01-22 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this extensive work, the authors give a complete self-contained exposition on the subject of classic function theory and the most recent developments in transcendental iteration. They clearly present the theory of iteration of transcendental functions and their analytic and geometric aspects. Attention is concentrated for the first time on the d
Download or read book Holomorphic Dynamical Systems written by Nessim Sibony and published by Springer Science & Business Media. This book was released on 2010-07-31 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.
Download or read book Holomorphic Dynamics written by S. Morosawa and published by Cambridge University Press. This book was released on 2000-01-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.
Download or read book Transcendental Dynamics and Complex Analysis written by Philip J. Rippon and published by Cambridge University Press. This book was released on 2008-06-26 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting papers by researchers in transcendental dynamics and complex analysis, this exciting new and modern book is written in honor of Noel Baker, who laid the foundations of transcendental complex dynamics. The papers describe the state of the art in this subject, with new results on completely invariant domains, wandering domains, the exponential parameter space, and normal families. The inclusion of comprehensive survey articles on dimensions of Julia sets, buried components of Julia sets, Baker domains, Fatou components of functions of small growth, and ergodic theory of transcendental meromorphic functions means this is essential reading for students and researchers in complex dynamics and complex analysis.
Download or read book Meromorphic Dynamics written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-01-31 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and detailed presentation of finite and infinite ergodic theory, fractal measures, and thermodynamic formalism.
Download or read book Meromorphic Dynamics Volume 1 written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-02-28 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.
Download or read book Meromorphic Dynamics Volume 2 written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-02-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, the second of two volumes, builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference.
Download or read book Complex Dynamics written by Dierk Schleicher and published by CRC Press. This book was released on 2009-11-03 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published
Download or read book Dynamic Topology written by G. Whyburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a privilege for me to write a foreword for this unusual book. The book is not primarily a reference work although many of the ideas and proofs are explained more clearly here than in any other source that I know. Nor is this a text of the customary sort. It is rather a record of a particular course and Gordon Whyburn's special method of teaching it. Perhaps the easiest way to describe the course and the method is to relate my own personal experience with a forerunner of this same course in the academic year 1937-1938. At that time, the course was offered every other year with a following course in algebraic topology on alternate years. There were five of us enrolled, and on the average we knew less mathematics than is now routinely given in a junior course in analysis. Whyburn's purpose, as we learned, was to prepare us in minimal time for research in the areas in which he was inter ested. His method was remarkable.
Download or read book Handbook of Dynamical Systems written by H. Broer and published by Elsevier. This book was released on 2010-11-10 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
Download or read book Thermodynamic Formalism written by Mark Pollicott and published by Springer Nature. This book was released on 2021-10-01 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume arose from a semester at CIRM-Luminy on “Thermodynamic Formalism: Applications to Probability, Geometry and Fractals” which brought together leading experts in the area to discuss topical problems and recent progress. It includes a number of surveys intended to make the field more accessible to younger mathematicians and scientists wishing to learn more about the area. Thermodynamic formalism has been a powerful tool in ergodic theory and dynamical system and its applications to other topics, particularly Riemannian geometry (especially in negative curvature), statistical properties of dynamical systems and fractal geometry. This work will be of value both to graduate students and more senior researchers interested in either learning about the main ideas and themes in thermodynamic formalism, and research themes which are at forefront of research in this area.
Download or read book Dynamical Systems And Related Topics Proceedings Of The International Conference written by K Shiraiwa and published by World Scientific. This book was released on 1991-11-29 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a satellite conference of the 1990 International Congress of Mathematicians. The main topics presented are mathematical theory of dynamical systems, complex dynamical systems, ergodic theory, chaos, and applications.
Download or read book Open Problems in Topology II written by Elliott M. Pearl and published by Elsevier. This book was released on 2011-08-11 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world
Download or read book Frontiers in Complex Dynamics written by Araceli Bonifant and published by Princeton University Press. This book was released on 2014-03-16 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put the papers in mathematical and historical perspective, color figures are included, and an index facilitates browsing. This collection will be useful to students and researchers for decades to come. The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fractal Geometry and Analysis written by Jacques Bélair and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ASI- which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal - was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot - the creator of numerous concepts in Fractal Geometry - who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion on piecewise estimates yielding actual values for the most common dimensions (Hausdorff, box-counting and packing dimensions). The dimension theory is mainly discussed by Mendes-France, Bedford, Falconer, Tricot and Rata. Construction of fractal sets. Scale in variance is a fundamental property of fractal sets.
Download or read book Mathematics Without Boundaries written by Themistocles M. Rassias and published by Springer. This book was released on 2014-09-17 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.