EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topological Dimension and Dynamical Systems

Download or read book Topological Dimension and Dynamical Systems written by Michel Coornaert and published by Springer. This book was released on 2015-06-20 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner’s characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

Book Dimension Groups and Dynamical Systems

Download or read book Dimension Groups and Dynamical Systems written by Fabien Durand and published by Cambridge University Press. This book was released on 2022-02-03 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first self-contained exposition of the connections between symbolic dynamical systems, dimension groups and Bratteli diagrams.

Book Dimension Theory in Dynamical Systems

Download or read book Dimension Theory in Dynamical Systems written by Yakov B. Pesin and published by University of Chicago Press. This book was released on 2008-04-15 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.

Book Dynamical Systems on 2  and 3 Manifolds

Download or read book Dynamical Systems on 2 and 3 Manifolds written by Viacheslav Z. Grines and published by Springer. This book was released on 2016-11-11 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Book Topological Dimension and Dynamical Systems

Download or read book Topological Dimension and Dynamical Systems written by Michel Coornaert and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner's characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

Book Infinite Dimensional Dynamical Systems in Mechanics and Physics

Download or read book Infinite Dimensional Dynamical Systems in Mechanics and Physics written by Roger Temam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.

Book One Dimensional Dynamics

    Book Details:
  • Author : Welington de Melo
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642780431
  • Pages : 616 pages

Download or read book One Dimensional Dynamics written by Welington de Melo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

Book Minimal Flows and Their Extensions

Download or read book Minimal Flows and Their Extensions written by J. Auslander and published by Elsevier. This book was released on 1988-07-01 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents developments in the abstract theory of topological dynamics, concentrating on the internal structure of minimal flows (actions of groups on compact Hausdorff spaces for which every orbit is dense) and their homomorphisms (continuous equivariant maps). Various classes of minimal flows (equicontinuous, distal, point distal) are intensively studied, and a general structure theorem is obtained. Another theme is the ``universal'' approach - entire classes of minimal flows are studied, rather than flows in isolation. This leads to the consideration of disjointness of flows, which is a kind of independence condition. Among the topics unique to this book are a proof of the Ellis ``joint continuity theorem'', a characterization of the equicontinuous structure relation, and the aforementioned structure theorem for minimal flows.

Book Measure  Topology  and Fractal Geometry

Download or read book Measure Topology and Fractal Geometry written by Gerald A. Edgar and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1

Book Introduction to the Modern Theory of Dynamical Systems

Download or read book Introduction to the Modern Theory of Dynamical Systems written by Anatole Katok and published by Cambridge University Press. This book was released on 1995 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Book Dynamical Systems by Example

Download or read book Dynamical Systems by Example written by Luís Barreira and published by Springer. This book was released on 2019-04-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises an impressive collection of problems that cover a variety of carefully selected topics on the core of the theory of dynamical systems. Aimed at the graduate/upper undergraduate level, the emphasis is on dynamical systems with discrete time. In addition to the basic theory, the topics include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as basic ergodic theory. As in other areas of mathematics, one can gain the first working knowledge of a topic by solving selected problems. It is rare to find large collections of problems in an advanced field of study much less to discover accompanying detailed solutions. This text fills a gap and can be used as a strong companion to an analogous dynamical systems textbook such as the authors’ own Dynamical Systems (Universitext, Springer) or another text designed for a one- or two-semester advanced undergraduate/graduate course. The book is also intended for independent study. Problems often begin with specific cases and then move on to general results, following a natural path of learning. They are also well-graded in terms of increasing the challenge to the reader. Anyone who works through the theory and problems in Part I will have acquired the background and techniques needed to do advanced studies in this area. Part II includes complete solutions to every problem given in Part I with each conveniently restated. Beyond basic prerequisites from linear algebra, differential and integral calculus, and complex analysis and topology, in each chapter the authors recall the notions and results (without proofs) that are necessary to treat the challenges set for that chapter, thus making the text self-contained.

Book Entropy in Dynamical Systems

Download or read book Entropy in Dynamical Systems written by Tomasz Downarowicz and published by Cambridge University Press. This book was released on 2011-05-12 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text on entropy covers three major types of dynamics: measure preserving transformations; continuous maps on compact spaces; and operators on function spaces. Part I contains proofs of the Shannon–McMillan–Breiman Theorem, the Ornstein–Weiss Return Time Theorem, the Krieger Generator Theorem and, among the newest developments, the ergodic law of series. In Part II, after an expanded exposition of classical topological entropy, the book addresses symbolic extension entropy. It offers deep insight into the theory of entropy structure and explains the role of zero-dimensional dynamics as a bridge between measurable and topological dynamics. Part III explains how both measure-theoretic and topological entropy can be extended to operators on relevant function spaces. Intuitive explanations, examples, exercises and open problems make this an ideal text for a graduate course on entropy theory. More experienced researchers can also find inspiration for further research.

Book Dimensions  Embeddings  and Attractors

Download or read book Dimensions Embeddings and Attractors written by James C. Robinson and published by Cambridge University Press. This book was released on 2010-12-16 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems.

Book Combinatorial Dynamics And Entropy In Dimension One  2nd Edition

Download or read book Combinatorial Dynamics And Entropy In Dimension One 2nd Edition written by Luis Alseda and published by World Scientific Publishing Company. This book was released on 2000-10-31 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the two main directions of one-dimensional dynamics. The first has its roots in the Sharkovskii theorem, which describes the possible sets of periods of all cycles (periodic orbits) of a continuous map of an interval into itself. The whole theory, which was developed based on this theorem, deals mainly with combinatorial objects, permutations, graphs, etc.; it is called combinatorial dynamics. The second direction has its main objective in measuring the complexity of a system, or the degree of “chaos” present in it; for that the topological entropy is used. The book analyzes the combinatorial dynamics and topological entropy for the continuous maps of either an interval or the circle into itself.

Book Artificial Intelligence and Dynamic Systems for Geophysical Applications

Download or read book Artificial Intelligence and Dynamic Systems for Geophysical Applications written by Alexej Gvishiani and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

Book Modelling  Simulation and Control of Non linear Dynamical Systems

Download or read book Modelling Simulation and Control of Non linear Dynamical Systems written by Patricia Melin and published by CRC Press. This book was released on 2001-10-25 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: These authors use soft computing techniques and fractal theory in this new approach to mathematical modeling, simulation and control of complexion-linear dynamical systems. First, a new fuzzy-fractal approach to automated mathematical modeling of non-linear dynamical systems is presented. It is illustrated with examples on the PROLOG programming la

Book From Dimension Free Matrix Theory to Cross Dimensional Dynamic Systems

Download or read book From Dimension Free Matrix Theory to Cross Dimensional Dynamic Systems written by Daizhan Cheng and published by Academic Press. This book was released on 2019-05-18 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems illuminates the underlying mathematics of semi-tensor product (STP), a generalized matrix product that extends the conventional matrix product to two matrices of arbitrary dimensions. Dimension-varying systems feature prominently across many disciplines, and through innovative applications its newly developed theory can revolutionize large data systems such as genomics and biosystems, deep learning, IT, and information-based engineering applications. - Provides, for the first time, cross-dimensional system theory that is useful for modeling dimension-varying systems. - Offers potential applications to the analysis and control of new dimension-varying systems. - Investigates the underlying mathematics of semi-tensor product, including the equivalence and lattice structure of matrices and monoid of matrices with arbitrary dimensions.