EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topics in Harmonic Analysis Related to the Littlewood Paley Theory

Download or read book Topics in Harmonic Analysis Related to the Littlewood Paley Theory written by Elias M. Stein and published by Princeton University Press. This book was released on 2016-03-02 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A review of background material in Lie groups and martingale theory is included to make the monograph more accessible to the student.

Book Classical Fourier Analysis

Download or read book Classical Fourier Analysis written by Loukas Grafakos and published by Springer Science & Business Media. This book was released on 2008-09-18 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

Book Approximation Theory and Harmonic Analysis on Spheres and Balls

Download or read book Approximation Theory and Harmonic Analysis on Spheres and Balls written by Feng Dai and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.

Book Classical and Multilinear Harmonic Analysis

Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Book Harmonic Analysis on Reductive Groups

Download or read book Harmonic Analysis on Reductive Groups written by W. Barker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec ond, there was a series of single lectures in which the speakers presented an overview of their latest research.

Book Real Variable Methods in Harmonic Analysis

Download or read book Real Variable Methods in Harmonic Analysis written by Alberto Torchinsky and published by Elsevier. This book was released on 2016-06-03 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-Variable Methods in Harmonic Analysis deals with the unity of several areas in harmonic analysis, with emphasis on real-variable methods. Active areas of research in this field are discussed, from the Calderón-Zygmund theory of singular integral operators to the Muckenhoupt theory of Ap weights and the Burkholder-Gundy theory of good ? inequalities. The Calderón theory of commutators is also considered. Comprised of 17 chapters, this volume begins with an introduction to the pointwise convergence of Fourier series of functions, followed by an analysis of Cesàro summability. The discussion then turns to norm convergence; the basic working principles of harmonic analysis, centered around the Calderón-Zygmund decomposition of locally integrable functions; and fractional integration. Subsequent chapters deal with harmonic and subharmonic functions; oscillation of functions; the Muckenhoupt theory of Ap weights; and elliptic equations in divergence form. The book also explores the essentials of the Calderón-Zygmund theory of singular integral operators; the good ? inequalities of Burkholder-Gundy; the Fefferman-Stein theory of Hardy spaces of several real variables; Carleson measures; and Cauchy integrals on Lipschitz curves. The final chapter presents the solution to the Dirichlet and Neumann problems on C1-domains by means of the layer potential methods. This monograph is intended for graduate students with varied backgrounds and interests, ranging from operator theory to partial differential equations.

Book Geometric Aspects of Harmonic Analysis

Download or read book Geometric Aspects of Harmonic Analysis written by Paolo Ciatti and published by Springer Nature. This book was released on 2021-09-27 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field.

Book Gaussian Harmonic Analysis

Download or read book Gaussian Harmonic Analysis written by Wilfredo Urbina-Romero and published by Springer. This book was released on 2019-06-21 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph develops the main topics of classical harmonic analysis (semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, spectral multipliers, fractional integrals and fractional derivatives, singular integrals) with respect to the Gaussian measure. The text provide an updated exposition, as self-contained as possible, of all the topics in Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books; also an exhaustive bibliography for further reading. Each chapter ends with a section of notes and further results where connections between Gaussian harmonic analysis and other connected fields, points of view and alternative techniques are given. Mathematicians and researchers in several areas will find the breadth and depth of the treatment of the subject highly useful.

Book Harmonic Analysis on Spaces of Homogeneous Type

Download or read book Harmonic Analysis on Spaces of Homogeneous Type written by Donggao Deng and published by Springer Science & Business Media. This book was released on 2008-11-19 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ̈ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.

Book Classical and Multilinear Harmonic Analysis

Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Book Commutative Harmonic Analysis IV

Download or read book Commutative Harmonic Analysis IV written by V.P. Khavin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.

Book Analysis in Banach Spaces

Download or read book Analysis in Banach Spaces written by Tuomas Hytönen and published by Springer. This book was released on 2018-07-07 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.

Book Harmonic Analysis  PMS 43   Volume 43

Download or read book Harmonic Analysis PMS 43 Volume 43 written by Elias M. Stein and published by Princeton University Press. This book was released on 2016-06-02 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.

Book Recent Developments in Real and Harmonic Analysis

Download or read book Recent Developments in Real and Harmonic Analysis written by Carlos Cabrelli and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of invited chapters dedicated to Carlos Segovia, this unified and self-contained volume examines recent developments in real and harmonic analysis. The work begins with a chronological description of Segovia’s mathematical life, highlighting his original ideas and their evolution. Also included are surveys dealing with Carlos’ favorite topics, and PDE works written by students and colleagues close to Segovia whose careers were in some way influenced by him. Contributors: H. Aimar, A. Bonami, O. Blasco, L.A. Caffarelli, S. Chanillo, J. Feuto, L. Forzani, C.E. Gutíerrez, E. Harboure, A.L. Karakhanyan, C.E. Kenig, R.A. Macías, J.J. Manfredi, F.J. Martín-Reyes, P. Ortega, R. Scotto, A. de la Torre, J.L. Torrea.

Book Harmonic Analysis on the Heisenberg Group

Download or read book Harmonic Analysis on the Heisenberg Group written by Sundaram Thangavelu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.

Book Harmonic Analysis in Euclidean Spaces  Part 2

Download or read book Harmonic Analysis in Euclidean Spaces Part 2 written by Guido Weiss and published by American Mathematical Soc.. This book was released on 1979 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains sections on Several complex variables, Pseudo differential operators and partial differential equations, Harmonic analysis in other settings: probability, martingales, local fields, and Lie groups and functional analysis.

Book Essays in Commutative Harmonic Analysis

Download or read book Essays in Commutative Harmonic Analysis written by C. C. Graham and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers various spaces and algebras made up of functions, measures, and other objects-situated always on one or another locally compact abelian group, and studied in the light of the Fourier transform. The emphasis is on the objects themselves, and on the structure-in-detail of the spaces and algebras. A mathematician needs to know only a little about Fourier analysis on the commutative groups, and then may go many ways within the large subject of harmonic analysis-into the beautiful theory of Lie group representations, for example. But this book represents the tendency to linger on the line, and the other abelian groups, and to keep asking questions about the structures thereupon. That tendency, pursued since the early days of analysis, has defined a field of study that can boast of some impressive results, and in which there still remain unanswered questions of compelling interest. We were influenced early in our careers by the mathematicians Jean-Pierre Kahane, Yitzhak Katznelson, Paul Malliavin, Yves Meyer, Joseph Taylor, and Nicholas Varopoulos. They are among the many who have made the field a productive meeting ground of probabilistic methods, number theory, diophantine approximation, and functional analysis. Since the academic year 1967-1968, when we were visitors in Paris and Orsay, the field has continued to see interesting developments. Let us name a few. Sam Drury and Nicholas Varopoulos solved the union problem for Helson sets, by proving a remarkable theorem (2.1.3) which has surely not seen its last use.