EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topics in Dynamical Neural Networks

Download or read book Topics in Dynamical Neural Networks written by Manuel Samuelides and published by . This book was released on 2007 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Static and Dynamic Neural Networks

Download or read book Static and Dynamic Neural Networks written by Madan Gupta and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.

Book Dynamics of Neural Networks

    Book Details:
  • Author : Michel J.A.M. van Putten
  • Publisher : Springer Nature
  • Release : 2020-12-18
  • ISBN : 3662611848
  • Pages : 259 pages

Download or read book Dynamics of Neural Networks written by Michel J.A.M. van Putten and published by Springer Nature. This book was released on 2020-12-18 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats essentials from neurophysiology (Hodgkin–Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.

Book Neuronal Dynamics

    Book Details:
  • Author : Wulfram Gerstner
  • Publisher : Cambridge University Press
  • Release : 2014-07-24
  • ISBN : 1107060834
  • Pages : 591 pages

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Book Neural Network Dynamics

Download or read book Neural Network Dynamics written by J.G. Taylor and published by Springer. This book was released on 1992-10-12 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Network Dynamics is the latest volume in the Perspectives in Neural Computing series. It contains papers presented at the 1991 Workshop on Complex Dynamics in Neural Networks, held at IIASS in Vietri, Italy. The workshop encompassed a wide range of topics in which neural networks play a fundamental role, and aimed to bridge the gap between neural computation and computational neuroscience. The papers - which have been updated where necessary to include new results - are divided into four sections, covering the foundations of neural network dynamics, oscillatory neural networks, as well as scientific and biological applications of neural networks. Among the topics discussed are: A general analysis of neural network activity; Descriptions of various network architectures and nodes; Correlated neuronal firing; A theoretical framework for analyzing the behaviour of real and simulated neuronal networks; The structural properties of proteins; Nuclear phenomenology; Resonance searches in high energy physics; The investigation of information storage; Visual cortical architecture; Visual processing. Neural Network Dynamics is the first volume to cover neural networks and computational neuroscience in such detail. Although it is primarily aimed at researchers and postgraduate students in the above disciplines, it will also be of interest to researchers in electrical engineering, medicine, psychology and philosophy.

Book Artificial Higher Order Neural Networks for Modeling and Simulation

Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Book The Functional Role of Critical Dynamics in Neural Systems

Download or read book The Functional Role of Critical Dynamics in Neural Systems written by Nergis Tomen and published by Springer. This book was released on 2019-07-23 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely overview of theories and methods developed by an authoritative group of researchers to understand the link between criticality and brain functioning. Cortical information processing in particular and brain function in general rely heavily on the collective dynamics of neurons and networks distributed over many brain areas. A key concept for characterizing and understanding brain dynamics is the idea that networks operate near a critical state, which offers several potential benefits for computation and information processing. However, there is still a large gap between research on criticality and understanding brain function. For example, cortical networks are not homogeneous but highly structured, they are not in a state of spontaneous activation but strongly driven by changing external stimuli, and they process information with respect to behavioral goals. So far the questions relating to how critical dynamics may support computation in this complex setting, and whether they can outperform other information processing schemes remain open. Based on the workshop “Dynamical Network States, Criticality and Cortical Function", held in March 2017 at the Hanse Institute for Advanced Studies (HWK) in Delmenhorst, Germany, the book provides readers with extensive information on these topics, as well as tools and ideas to answer the above-mentioned questions. It is meant for physicists, computational and systems neuroscientists, and biologists.

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book A Field Guide to Dynamical Recurrent Networks

Download or read book A Field Guide to Dynamical Recurrent Networks written by John F. Kolen and published by John Wiley & Sons. This book was released on 2001-01-15 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.

Book Neural Networks and Fuzzy Systems

Download or read book Neural Networks and Fuzzy Systems written by Bart Kosko and published by . This book was released on 1992 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the foremost experts in the field of neural networks, this is the first book to combine the theories and applications or neural networks and fuzzy systems. The book is divided into three sections: Neural Network Theory, Neural Network Applications, and Fuzzy Theory and Applications. It describes how neural networks can be used in applications such as: signal and image processing, function estimation, robotics and control, analog VLSI and optical hardware design; and concludes with a presentation of the new geometric theory of fuzzy sets, systems, and associative memories.

Book Dynamic Neural Networks for Robot Systems  Data Driven and Model Based Applications

Download or read book Dynamic Neural Networks for Robot Systems Data Driven and Model Based Applications written by Long Jin and published by Frontiers Media SA. This book was released on 2024-07-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network control has been a research hotspot in academic fields due to the strong ability of computation. One of its wildly applied fields is robotics. In recent years, plenty of researchers have devised different types of dynamic neural network (DNN) to address complex control issues in robotics fields in reality. Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation CMG task, to some extent. It is worthwhile to investigate the data-driven scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously. Therefore, it is of great significance to further research the special control features and solve challenging issues to improve control performance from several perspectives, such as accuracy, robustness, and solving speed.

Book Advanced Models of Neural Networks

Download or read book Advanced Models of Neural Networks written by Gerasimos G. Rigatos and published by Springer. This book was released on 2014-08-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

Book Fundamentals of Artificial Neural Networks

Download or read book Fundamentals of Artificial Neural Networks written by Mohamad H. Hassoun and published by MIT Press. This book was released on 1995 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.

Book An Introduction to Modeling Neuronal Dynamics

Download or read book An Introduction to Modeling Neuronal Dynamics written by Christoph Börgers and published by Springer. This book was released on 2017-04-17 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.

Book Special Topics in Structural Dynamics  Volume 6

Download or read book Special Topics in Structural Dynamics Volume 6 written by Randall Allemang and published by Springer. This book was released on 2015-04-20 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special Topics in Structural Dynamics, Volume 6: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015, the sixth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Aircraft/Aerospace Active Control Analytical Methods System Identification Sensors and Instrumentation

Book Neural Networks  Computational Models and Applications

Download or read book Neural Networks Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.

Book Calculus of Thought

    Book Details:
  • Author : Daniel M Rice
  • Publisher : Academic Press
  • Release : 2013-10-15
  • ISBN : 0124104525
  • Pages : 295 pages

Download or read book Calculus of Thought written by Daniel M Rice and published by Academic Press. This book was released on 2013-10-15 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus of Thought: Neuromorphic Logistic Regression in Cognitive Machines is a must-read for all scientists about a very simple computation method designed to simulate big-data neural processing. This book is inspired by the Calculus Ratiocinator idea of Gottfried Leibniz, which is that machine computation should be developed to simulate human cognitive processes, thus avoiding problematic subjective bias in analytic solutions to practical and scientific problems. The reduced error logistic regression (RELR) method is proposed as such a "Calculus of Thought." This book reviews how RELR's completely automated processing may parallel important aspects of explicit and implicit learning in neural processes. It emphasizes the fact that RELR is really just a simple adjustment to already widely used logistic regression, along with RELR's new applications that go well beyond standard logistic regression in prediction and explanation. Readers will learn how RELR solves some of the most basic problems in today's big and small data related to high dimensionality, multi-colinearity, and cognitive bias in capricious outcomes commonly involving human behavior. - Provides a high-level introduction and detailed reviews of the neural, statistical and machine learning knowledge base as a foundation for a new era of smarter machines - Argues that smarter machine learning to handle both explanation and prediction without cognitive bias must have a foundation in cognitive neuroscience and must embody similar explicit and implicit learning principles that occur in the brain