EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book topics in bifurcation theory and applications second edition

Download or read book topics in bifurcation theory and applications second edition written by and published by Allied Publishers. This book was released on with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topics in Bifurcation Theory and Applications

Download or read book Topics in Bifurcation Theory and Applications written by Gérard Iooss and published by World Scientific Publishing Company. This book was released on 1999-01-22 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the most efficient analytical techniques in the local bifurcation theory of vector fields. It is centered on the theory of normal forms and its applications, including interaction with symmetries. The first part of the book reviews the center manifold reduction and introduces normal forms (with complete proofs). Basic bifurcations are studied together with bifurcations in the presence of symmetries. Special attention is given to examples with reversible vector fields, including the physical example given by the water waves. In this second edition, many problems with detailed solutions are added at the end of the first part (some systems being in infinite dimensions). The second part deals with the Couette–Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions results directly from the analysis of the reduced system on a center manifold. In this part we also study bifurcations (simple here) from group orbits of solutions in an elementary way (avoiding heavy algebra). The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.

Book Topics in Bifurcation Theory and Applications

Download or read book Topics in Bifurcation Theory and Applications written by G‚rard Iooss and published by World Scientific. This book was released on 1998 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the most efficient analytical techniques in the local bifurcation theory of vector fields. It is centered on the theory of normal forms and its applications, including interaction with symmetries. The first part of the book reviews the center manifold reduction and introduces normal forms (with complete proofs). Basic bifurcations are studied together with bifurcations in the presence of symmetries. Special attention is given to examples with reversible vector fields, including the physical example given by the water waves. In this second edition, many problems with detailed solutions are added at the end of the first part (some systems being in infinite dimensions). The second part deals with the Couette-Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions results directly from the analysis of the reduced system on a center manifold. In this part we also study bifurcations (simple here) from group orbits of solutions in an elementary way (avoiding heavy algebra). The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.

Book Elements of Applied Bifurcation Theory

Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Book Bifurcation Theory And Applications

Download or read book Bifurcation Theory And Applications written by Shouhong Wang and published by World Scientific. This book was released on 2005-06-27 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.

Book Bifurcation Theory

    Book Details:
  • Author : Hansjörg Kielhöfer
  • Publisher : Springer Science & Business Media
  • Release : 2006-04-10
  • ISBN : 0387216332
  • Pages : 355 pages

Download or read book Bifurcation Theory written by Hansjörg Kielhöfer and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations.

Book Practical Bifurcation and Stability Analysis

Download or read book Practical Bifurcation and Stability Analysis written by Rüdiger U. Seydel and published by Springer Science & Business Media. This book was released on 2009-11-27 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.

Book An Introduction To Chaotic Dynamical Systems

Download or read book An Introduction To Chaotic Dynamical Systems written by Robert Devaney and published by CRC Press. This book was released on 2018-03-09 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Book Nonlinear Dynamics and Chaos

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Book Global Bifurcation Theory and Hilbert s Sixteenth Problem

Download or read book Global Bifurcation Theory and Hilbert s Sixteenth Problem written by V. Gaiko and published by Springer Science & Business Media. This book was released on 2003-09-30 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is devoted to the qualitative investigation of two-dimensional polynomial dynamical systems and is aimed at solving Hilbert's Sixteenth Problem on the maximum number and relative position of limit cycles. The author presents a global bifurcation theory of such systems and suggests a new global approach to the study of limit cycle bifurcations. The obtained results can be applied to higher-dimensional dynamical systems and can be used for the global qualitative analysis of various mathematical models in mechanics, radioelectronics, in ecology and medicine. Audience: The book would be of interest to specialists in the field of qualitative theory of differential equations and bifurcation theory of dynamical systems. It would also be useful to senior level undergraduate students, postgraduate students, and specialists working in related fields of mathematics and applications.

Book Dynamics of the Chemostat

Download or read book Dynamics of the Chemostat written by Abdelhamid Ajbar and published by CRC Press. This book was released on 2011-08-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors’ extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. Introduction The authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the modeling approaches used for bioreactive systems, the different kinetic expressions for growth rates, and tools, such as multiplicity, bifurcation, and singularity theory, for analyzing nonlinear systems. Application The text moves on to the static and dynamic behavior of the basic unstructured model of the chemostat for constant and variable yield coefficients as well as in the presence of wall attachment. It then covers the dynamics of interacting species, including pure and simple microbial competition, biodegradation of mixed substrates, dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator–prey interactions. The authors also examine dynamics of the chemostat with product formation for various growth models, provide examples of bifurcation theory for studying the operability and dynamics of continuous bioreactor models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book presents a cohesive mathematical framework for analyzing and modeling the macro- and microscopic interactions occurring in chemostats. The text includes models that describe the intracellular and operating elements of the bioreactive system. It also explains the mathematical theory behind the models.

Book Nonlinear Oscillations  Dynamical Systems  and Bifurcations of Vector Fields

Download or read book Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields written by John Guckenheimer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Book Elementary Stability and Bifurcation Theory

Download or read book Elementary Stability and Bifurcation Theory written by Gerard Iooss and published by Springer. This book was released on 1997-12-02 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.

Book Nonlinear Differential Equations and Dynamical Systems

Download or read book Nonlinear Differential Equations and Dynamical Systems written by Ferdinand Verhulst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.

Book Singularities and Groups in Bifurcation Theory

Download or read book Singularities and Groups in Bifurcation Theory written by Martin Golubitsky and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.

Book Nonlinear Functional Analysis

Download or read book Nonlinear Functional Analysis written by S. Kesavan and published by Springer. This book was released on 2004-01-15 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Exploration of Dynamical Systems and Chaos

Download or read book An Exploration of Dynamical Systems and Chaos written by John H. Argyris and published by Springer. This book was released on 2015-04-24 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany