EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time split Methods for Partial Differential Equations

Download or read book Time split Methods for Partial Differential Equations written by Randall J. LeVeque and published by . This book was released on 1982 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis concerns the use of time-split methods for the numerical solution of time-dependent partial differential equations. Frequently the differential operator splits additively into two or more pieces such that the corresponding subproblems are each easier to solve than the original equation, or are best handled by different techniques. In the time-split method the solution to the original equation is advanced by alternately solving the subproblems. In this thesis a unified approach to splitting methods is developed which simplifies their analysis. Particular emphasis is given to splittings of hyperbolic problems into subproblems with disparate wave speeds. Three main aspects of the method are considered. The first is the accuracy and efficiency of the time-split method relative to unsplit methods. The second topic is stability for split methods. The final topic is the proper specification of boundary data for the intermediate solutions, e.g., the solution obtained after solving only one of the subproblems. The main emphasis is on hyperbolic problems, and the one-dimensional shallow water equations are used as a specific example throughout. The final chapter is devoted to some other applications or the theory. Two-dimensional hyperbolic problems, convection-diffusion equations, and the Peaceman-Rachford ADI method for the heat equation are considered.

Book Splitting Methods for Partial Differential Equations with Rough Solutions

Download or read book Splitting Methods for Partial Differential Equations with Rough Solutions written by Helge Holden and published by European Mathematical Society. This book was released on 2010 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Book Space Time Methods

    Book Details:
  • Author : Ulrich Langer
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2019-09-23
  • ISBN : 3110548488
  • Pages : 261 pages

Download or read book Space Time Methods written by Ulrich Langer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-09-23 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by William F. Ames and published by Academic Press. This book was released on 2014-05-10 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Book Finite Difference Computing with PDEs

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Book Time dependent Partial Differential Equations and Their Numerical Solution

Download or read book Time dependent Partial Differential Equations and Their Numerical Solution written by Heinz-Otto Kreiss and published by Birkhäuser. This book was released on 2012-12-06 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Book Numerical Time Dependent Partial Differential Equations for Scientists and Engineers

Download or read book Numerical Time Dependent Partial Differential Equations for Scientists and Engineers written by Moysey Brio and published by Academic Press. This book was released on 2010-09-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations

Book Introductory Finite Difference Methods for PDEs

Download or read book Introductory Finite Difference Methods for PDEs written by and published by Bookboon. This book was released on with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finite Difference Method in Partial Differential Equations

Download or read book The Finite Difference Method in Partial Differential Equations written by A. R. Mitchell and published by . This book was released on 1980-03-10 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensively revised edition of Computational Methods in Partial Differential Equations. A more general approach has been adopted for the splitting of operators for parabolic and hyperbolic equations to include Richtmyer and Strang type splittings in addition to alternating direction implicit and locally one dimensional methods. A description of the now standard factorization and SOR/ADI iterative techniques for solving elliptic difference equations has been supplemented with an account or preconditioned conjugate gradient methods which are currently gaining in popularity. Prominence is also given to the Galerkin method using different test and trial functions as a means of constructing difference approximations to both elliptic and time dependent problems. The applications of finite difference methods have been revised and contain examples involving the treatment of singularities in elliptic equations, free and moving boundary problems, as well as modern developments in computational fluid dynamics. Emphasis throughout is on clear exposition of the construction and solution of difference equations. Material is reinforced with theoretical results when appropriate.

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by Sandip Mazumder and published by Academic Press. This book was released on 2015-12-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

Book Numerical Solution of Partial Differential Equations

Download or read book Numerical Solution of Partial Differential Equations written by Gordon D. Smith and published by Oxford University Press. This book was released on 1985 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.

Book Programming for Computations   MATLAB Octave

Download or read book Programming for Computations MATLAB Octave written by Svein Linge and published by Springer. This book was released on 2016-08-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by Seymour V. Parter and published by . This book was released on 1979 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations.

Book Iterative Splitting Methods for Differential Equations

Download or read book Iterative Splitting Methods for Differential Equations written by Juergen Geiser and published by CRC Press. This book was released on 2011-06-01 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations.In th

Book Computational Partial Differential Equations

Download or read book Computational Partial Differential Equations written by Hans P. Langtangen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text teaches finite element methods and basic finite difference methods from a computational point of view. It emphasizes developing flexible computer programs using the numerical library Diffpack, which is detailed for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. This edition offers new applications and projects, and all program examples are available on the Internet.