EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analyzing Neural Time Series Data

Download or read book Analyzing Neural Time Series Data written by Mike X Cohen and published by MIT Press. This book was released on 2014-01-17 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.

Book Fundamentals of Clinical Data Science

Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Book Probability  Statistics  And Decision Making In The Atmospheric Sciences

Download or read book Probability Statistics And Decision Making In The Atmospheric Sciences written by Allan Murphy and published by CRC Press. This book was released on 2019-07-11 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methodology drawn from the fields of probability. statistics and decision making plays an increasingly important role in the atmosphericsciences. both in basic and applied research and in experimental and operational studies. Applications of such methodology can be found in almost every facet of the discipline. from the most theoretical and global (e.g., atmospheric predictability. global climate modeling) to the most practical and local (e.g., crop-weather modeling forecast evaluation). Almost every issue of the multitude of journals published by the atmospheric sciences community now contain some or more papers involving applications of concepts and/or methodology from the fields of probability and statistics. Despite the increasingly pervasive nature of such applications. very few book length treatments of probabilistic and statistical topics of particular interest to atmospheric scientists have appeared (especially inEnglish) since the publication of the pioneering works of Brooks andCarruthers (Handbook of Statistical Methods in Meteorology) in 1953 and Panofsky and Brier-(some Applications of)statistics to Meteor) in 1958. As a result. many relatively recent developments in probability and statistics are not well known to atmospheric scientists and recent work in active areas of meteorological research involving significant applications of probabilistic and statistical methods are not familiar to the meteorological community as a whole.

Book The Spectral Analysis of Time Series

Download or read book The Spectral Analysis of Time Series written by L. H. Koopmans and published by Academic Press. This book was released on 2014-05-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.

Book Time Series Analysis

Download or read book Time Series Analysis written by Jonathan D. Cryer and published by Springer Science & Business Media. This book was released on 2008-04-04 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Book Time Series in the Time Domain

Download or read book Time Series in the Time Domain written by Edward James Hannan and published by North Holland. This book was released on 1985 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. In this volume prominent workers in the field discuss various time series methods in the time domain. The topics included are autoregressive-moving average models, control, estimation, identification, model selection, non-linear time series, non-stationary time series, prediction, robustness, sampling designs, signal attenuation, and speech recognition. This volume complements Handbook of Statistics 3: Time Series in the Frequency Domain.

Book Time Series Analysis

Download or read book Time Series Analysis written by Henrik Madsen and published by CRC Press. This book was released on 2007-11-28 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a focus on analyzing and modeling linear dynamic systems using statistical methods, Time Series Analysis formulates various linear models, discusses their theoretical characteristics, and explores the connections among stochastic dynamic models. Emphasizing the time domain description, the author presents theorems to highlight the most

Book Elements of Multivariate Time Series Analysis

Download or read book Elements of Multivariate Time Series Analysis written by Gregory C. Reinsel and published by Springer Science & Business Media. This book was released on 2003-10-31 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now available in paperback, this book introduces basic concepts and methods useful in the analysis and modeling of multivariate time series data. It concentrates on the time-domain analysis of multivariate time series, and assumes univariate time series analysis, while covering basic topics such as stationary processes and their covariance matrix structure, vector AR, MA, and ARMA models, forecasting, least squares and maximum likelihood estimation for ARMA models, associated likelihood ratio testing procedures.

Book Time Domain Electromagnetics

Download or read book Time Domain Electromagnetics written by Sadasiva Madiraju Rao and published by . This book was released on 1999 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Domain Electromagnetics is the first book devoted entirely to describing detailed coverage of tested time domain methods. This book is the ideal reference for the growing number of professional engineers and students interested in direct time domain methods used in calculating electromagnetic scattering/interaction phenomena.

Book Signal Analysis

Download or read book Signal Analysis written by Ronald L. Allen and published by John Wiley & Sons. This book was released on 2004-06-07 with total page 961 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a well-rounded, mathematical approach to problems in signal interpretation using the latest time, frequency, and mixed-domain methods Equally useful as a reference, an up-to-date review, a learning tool, and a resource for signal analysis techniques Provides a gradual introduction to the mathematics so that the less mathematically adept reader will not be overwhelmed with instant hard analysis Covers Hilbert spaces, complex analysis, distributions, random signals, analog Fourier transforms, and more

Book Time Series

Download or read book Time Series written by G. J. Janacek and published by Ellis Horwood. This book was released on 1993 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to time series analysis has been written for undergraduates and postgraduates, and assumes some basic statistical knowledge. Using a general state space model, the authors draw together methodologies to enable the development of methods for estimation and forecasting.

Book Time Series Analysis Univariate and Multivariate Methods

Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.

Book Time Series Analysis in Climatology and Related Sciences

Download or read book Time Series Analysis in Climatology and Related Sciences written by Victor Privalsky and published by Springer Nature. This book was released on 2020-11-22 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the reader the basic knowledge of the theory of random processes necessary for applying to study climatic time series. It contains many examples in different areas of time series analysis such as autoregressive modelling and spectral analysis, linear extrapolation, simulation, causality, relations between scalar components of multivariate time series, and reconstructions of climate data. As an important feature, the book contains many practical examples and recommendations about how to deal and how not to deal with applied problems of time series analysis in climatology or any other science where the time series are short.

Book Time Series

    Book Details:
  • Author : Robert Shumway
  • Publisher : CRC Press
  • Release : 2019-05-17
  • ISBN : 1000008398
  • Pages : 218 pages

Download or read book Time Series written by Robert Shumway and published by CRC Press. This book was released on 2019-05-17 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goals of this text are to develop the skills and an appreciation for the richness and versatility of modern time series analysis as a tool for analyzing dependent data. A useful feature of the presentation is the inclusion of nontrivial data sets illustrating the richness of potential applications to problems in the biological, physical, and social sciences as well as medicine. The text presents a balanced and comprehensive treatment of both time and frequency domain methods with an emphasis on data analysis. Numerous examples using data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and the analysis of economic and financial problems. The text can be used for a one semester/quarter introductory time series course where the prerequisites are an understanding of linear regression, basic calculus-based probability skills, and math skills at the high school level. All of the numerical examples use the R statistical package without assuming that the reader has previously used the software. Robert H. Shumway is Professor Emeritus of Statistics, University of California, Davis. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is the author of numerous texts and served on editorial boards such as the Journal of Forecasting and the Journal of the American Statistical Association. David S. Stoffer is Professor of Statistics, University of Pittsburgh. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is currently on the editorial boards of the Journal of Forecasting, the Annals of Statistical Mathematics, and the Journal of Time Series Analysis. He served as a Program Director in the Division of Mathematical Sciences at the National Science Foundation and as an Associate Editor for the Journal of the American Statistical Association and the Journal of Business & Economic Statistics.

Book The New S Language

Download or read book The New S Language written by R. Becker and published by CRC Press. This book was released on 2018-05-04 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides documentation for a new version of the S system released in 1988. The new S enhances the features that have made S popular: interactive computing, flexible graphics, data management and a large collection of functions. The new S features make possible new applications and higher-level programming, including a single unified language, user defined functions as first-class objects, symbolic computations, more accurate numerical calculations and a new approach to graphics. S now provides direct interfaces to the poowerful tool of the UNIX operating system and to algorithms implemented in Fortran and C.

Book Introductory Time Series with R

Download or read book Introductory Time Series with R written by Paul S.P. Cowpertwait and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.

Book The Analysis of Time Series

Download or read book The Analysis of Time Series written by Chris Chatfield and published by CRC Press. This book was released on 2016-03-30 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from www.crcpress.com. A free online appendix on time series analysis using R can be accessed at http://people.bath.ac.uk/mascc/TSA.usingR.doc. Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.