EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time optimal Path Planning of Robotic Manipulators

Download or read book Time optimal Path Planning of Robotic Manipulators written by Chia-Ju Wu and published by . This book was released on 1990 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Time Optimal Path Planning for Robotic Manipulators in the Presence of Obstacles  with Actuator  Gripper and Payload Constraints

Download or read book Time Optimal Path Planning for Robotic Manipulators in the Presence of Obstacles with Actuator Gripper and Payload Constraints written by Z. Shiller and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modern Robotics

    Book Details:
  • Author : Kevin M. Lynch
  • Publisher : Cambridge University Press
  • Release : 2017-05-25
  • ISBN : 1107156300
  • Pages : 545 pages

Download or read book Modern Robotics written by Kevin M. Lynch and published by Cambridge University Press. This book was released on 2017-05-25 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Book Optimal Trajectory Planning of Robotic Manipulators

Download or read book Optimal Trajectory Planning of Robotic Manipulators written by Sunil Kumar Singh and published by . This book was released on 1985 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Robot Kinematics

Download or read book Advances in Robot Kinematics written by Jadran Lenarčič and published by Springer. This book was released on 2014-05-19 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to over constrained. The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

Book Optimal Path Planning for Robotic Manipulators

Download or read book Optimal Path Planning for Robotic Manipulators written by Michael Robert Madden and published by . This book was released on 1986 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimal Path Planning for Multi arm  Multi link Robotic Manipulators

Download or read book Optimal Path Planning for Multi arm Multi link Robotic Manipulators written by Joseph A. Cascio and published by . This book was released on 2008 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work investigates the problem of robotic arm control with the goal of achieving given performance requirements by solving for the optimal joint trajectories and corresponding controls for tasks, such as point-to-point positioning. The resulting optimal control problem is highly nonlinear and constrained due to the nonlinearities in the robotic arm dynamics and kinodynamic constraints including limits on joint velocities and actuator torques. This thesis illustrates the applicability of pseudospectral methods to solve the optimal path planning problem for a system of multi-link, multi-degree of freedom robotic arms. The optimal control problem is defined in standard form and solved using the software package DIDO. Pontryagin's Minimum Principle is used to verify that the proposed solution satisfies the necessary conditions for optimality. A particularly challenging aspect that is explored is the optimal motion of multiple arms conducting independent tasks with the risk of collision. Collision avoidance can be achieved by modeling appropriate path constraints. The processes for optimal trajectory planning are developed for a single two degree-of-freedom manipulator conducting point-to-point positioning and extended to include dual three degree-of-freedom manipulator maneuvers employing collision avoidance. The results demonstrate the suitability of pseudospectral techniques to solving the minimum time and minimum control maneuvers for robotic arms. The employment of collision avoidance techniques will facilitate continued research in autonomous robotic motion planning using optimal control criteria in multiple arm systems.

Book Trajectory Planning for Automatic Machines and Robots

Download or read book Trajectory Planning for Automatic Machines and Robots written by Luigi Biagiotti and published by Springer Science & Business Media. This book was released on 2008-10-23 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the problems related to planning motion laws and t- jectories for the actuation system of automatic machines, in particular for those based on electric drives, and robots. The problem of planning suitable trajectories is relevant not only for the proper use of these machines, in order to avoid undesired e?ects such as vibrations or even damages on the mech- ical structure, but also in some phases of their design and in the choice and sizing of the actuators. This is particularly true now that the concept of “el- tronic cams” has replaced, in the design of automatic machines, the classical approach based on “mechanical cams”. The choice of a particular trajectory has direct and relevant implications on several aspects of the design and use of an automatic machine, like the dimensioning of the actuators and of the reduction gears, the vibrations and e?orts generated on the machine and on the load, the tracking errors during the motion execution. For these reasons, in order to understand and appreciate the peculiarities of the di?erent techniques available for trajectory planning, besides the ma- ematical aspects of their implementation also a detailed analysis in the time and frequency domains, a comparison of their main properties under di?erent points of view, and general considerations related to their practical use are reported.

Book Motion Planning for Humanoid Robots

Download or read book Motion Planning for Humanoid Robots written by Kensuke Harada and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: • whole body motion planning, • task planning, • biped gait planning, and • sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.

Book On the Time optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators

Download or read book On the Time optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators written by Pedro Reynoso Mora and published by . This book was released on 2013 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, we study two important subjects in robotics: (i) time-optimal trajectory planning, and (ii) optimal control synthesis methodologies for trajectory tracking. In the first subject, we concentrate on a rather specific sub-class of problems, the time-optimal trajectory planning along predetermined geometric paths. In this kind of problem, a purely geometric path is already known, and the task is to find out how to move along this path in the shortest time physically possible. In order to generate the true fastest solutions achievable by the actual robot manipulator, the complete nonlinear dynamic model should be incorporated into the problem formulation as a constraint that must be satisfied by the generated trajectories and feedforward torques. This important problem was studied in the 1980s, with many related methods for addressing it based on the so-called velocity limit curve and variational methods. Modern formulations directly discretize the problem and obtain a large-scale mathematical optimization problem, which is a prominent approach to tackle optimal control problems that has gained popularity over variational methods, mainly because it allows to obtain numerical solutions for harder problems. We contribute to the referred problem of time-optimal trajectory planning, by extending and improving the existing mathematical optimization formulations. We successfully incorporate the complete nonlinear dynamic model, including viscous friction because for the fastest motions it becomes even more significant than Coulomb friction; of course, Coulomb friction is likewise accommodated for in our formulation. We develop a framework that guarantees exact dynamic feasibility of the generated time-optimal trajectories and feedforward torques. Our initial formulation is carefully crafted in a rather specific manner, so that it allows to naturally propose a convex relaxation that solves exactly the original problem formulation, which is non-convex and therefore hard to solve. In order to numerically solve the proposed formulation, a discretization scheme is also developed. Unlike traditional and modern formulations, we motivate the incorporation of additional criteria to our original formulation, with simulation and experimental studies of three crucial variables for a 6-axis industrial manipulator. Namely, the resulting applied torques, the readings of a 3-axis accelerometer mounted at the manipulator end-effector, and the detrimental effects on the tracking errors induced by pure time-optimal solutions. We therefore emphasize the significance of penalizing a measure of total jerk and of imposing acceleration constraints. These two criteria are incorporated without destroying convexity. The final formulation generates near time-optimal trajectories and feedforward torques with traveling times that are slightly larger than those of pure time-optimal solutions. Nevertheless, the detrimental effects induced by pure time-optimality are eliminated. Experimental results on a 6-axis industrial manipulator confirm that our formulation generates the fastest solutions that can actually be implemented in the real robot manipulator. Following the work done on near time-optimal trajectories, we explore two controller synthesis methodologies for trajectory tracking, which are more suitable to achieve trajectory-tracking under such fast trajectories. In the first approach, we approximate the discrete-time nonlinear dynamics of robot manipulators, moving along the state-reference trajectory, as an affine time-varying (ATV) dynamical system in discrete-time. Therefore, the problem of trajectory tracking for robot manipulators is posed as a linear quadratic (LQ) optimal control problem for a class of discrete-time ATV dynamical systems. Then, an ATV control law to achieve trajectory tracking on the ATV system is developed, which uses LQ methods for linear time-varying (LTV) systems. Since the ATV dynamical system approximates the nonlinear robot dynamics along the state-reference trajectory, the resulting time-varying control law is suitable to achieve trajectory tracking on the robot manipulator. The ATV control law is implemented in experiments for the 6-axis industrial manipulator, tracking the near time-optimal trajectory. Experimental results verify the better performance achieved with the ATV control law, but also expose its shortcomings. The second approach to address trajectory tracking is related in spirit, but different in crucial aspects, which ultimately endow this approach with its superior features. In this novel approach, the highly nonlinear dynamic model of robot manipulators, moving along a state-reference trajectory, is approximated as a class of piecewise affine (PWA) dynamical systems. We propose a framework to construct the referred PWA system, which consists in: (i) choosing strategic operating points on the state-reference trajectory with their respective (local) linearized system dynamics, (ii) constructing ellipsoidal regions centered at the operating points, whose purpose is to facilitate the scheduling strategy of controller gains designed for each local dynamics. Likewise, in order to switch controller gains as the robot state traverses in the direction of the state-reference trajectory, a simple scheduling strategy is proposed. The controller synthesis near each operating point is an LQR-type that takes into account the local coupled dynamics. The referred PWA control law is implemented in experiments for the 6-axis manipulator tracking the near time-optimal trajectory. The experimental results show the feasibility and superiority of the PWA control law over the typical PID controller and the ATV control law.

Book The Complexity of Robot Motion Planning

Download or read book The Complexity of Robot Motion Planning written by John Canny and published by MIT Press. This book was released on 1988 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.

Book Algorithmic Foundations of Robotics V

Download or read book Algorithmic Foundations of Robotics V written by Jean-Daniel Boissonnat and published by Springer Science & Business Media. This book was released on 2003-09-11 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected contributions to the Workshop WAFR 2002, held December 15-17, 2002, Nice, France. This fifth biannual Workshop on Algorithmic Foundations of Robotics focuses on algorithmic issues related to robotics and automation. The design and analysis of robot algorithms raises fundamental questions in computer science, computational geometry, mechanical modeling, operations research, control theory, and associated fields. The highly selective program highlights significant new results such as algorithmic models and complexity bounds. The validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.

Book Optimal Path Planning for Satellite Mounted Robot Manipulators

Download or read book Optimal Path Planning for Satellite Mounted Robot Manipulators written by Volker H. Schulz and published by . This book was released on 1993 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book On Line Trajectory Generation in Robotic Systems

Download or read book On Line Trajectory Generation in Robotic Systems written by Torsten Kröger and published by Springer. This book was released on 2010-01-10 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse research areas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.

Book Primal dual Interior Point Methods

Download or read book Primal dual Interior Point Methods written by Stephen J. Wright and published by SIAM. This book was released on 1997-01-01 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.