EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time Domain Electromagnetics

Download or read book Time Domain Electromagnetics written by Sadasiva M. Rao and published by Elsevier. This book was released on 1999-07-26 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Domain Electromagnetics deals with a specific technique in electromagnetics within the general area of electrical engineering. This mathematical method has become a standard for a wide variety of applications for design and problem solving. This method of analysis in electromagnetics is directly related to advances in cellular and mobile communications technology, as well as traditional EM areas such as radar, antennas, and wave propagation. Most of the material is available in the research journals which is difficult for a non-specialist to locate, read, understand, and effectively use for the problem at hand. - Only book currently available to practicing engineers and research scientists exclusively devoted to this subject - Includes contributions by the world's leading experts in electromagnetics - Presents the most popular methods used in time domain analysis are included at one place with thorough discussion of the methods in an easily understandable style - In each chapter, many simple and practical examples are discussed thoroughly to illustrate the salient points of the material presented - All chapters are written in a consistent style that allows the book to be of use for self-study by professionals as well as for use in a graduate-level course in electrical engineering

Book The Finite Difference Time Domain Method for Electromagnetics

Download or read book The Finite Difference Time Domain Method for Electromagnetics written by Karl S. Kunz and published by Routledge. This book was released on 2018-05-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Book The Finite Difference Time Domain Method for Electromagnetics with MATLAB   Simulations

Download or read book The Finite Difference Time Domain Method for Electromagnetics with MATLAB Simulations written by Atef Z. Elsherbeni and published by IET. This book was released on 2015-11-25 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the best books on computational electromagnetics both for graduate students focusing on electromagnetics problems and for practicing engineering professionals in industry and government. It is designed as an advanced textbook and self-study guide to the FDTD method of solving EM problems and simulations. This latest edition has been expanded to include 5 entirely new chapters on advanced topics in the mainstream of FDTD practice. In addition to advanced techniques it also includes applications and examples, and some 'tricks and traps' of using MATLAB to achieve them. Compared to the previous version the second edition is more complete and is a good reference for someone who is performing FDTD research. This book is part of the ACES Series on Computational Electromagnetics and Engineering. Supplementary material can be found at the IET's ebook page Supplementary materials for professors are available upon request via email to [email protected].

Book Electromagnetic Methods in Applied Geophysics

Download or read book Electromagnetic Methods in Applied Geophysics written by Misac N. Nabighian and published by SEG Books. This book was released on 1988 with total page 989 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a slag heap, the result of strip mining, creeps closer to his house in the Ohio hills, fifteen-year-old M. C. is torn between trying to get his family away and fighting for the home they love.

Book Plane Wave Theory of Time Domain Fields

Download or read book Plane Wave Theory of Time Domain Fields written by Thorkild B. Hansen and published by John Wiley & Sons. This book was released on 1999-06-10 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This invaluable book provides a comprehensive framework for the formulation and solution ofnumerous problems involving the radiation, reception, propagation, and scattering of electromagnetic and acoustic waves. Filled with original derivations and theorems, it includes the first rigorous development of plane-wave expansions for time-domain electromagnetic and acoustic fields. For the past 35 years, near-field measurement techniques have been confined to the frequency domain. Now, with the publication of this book, probe-corrected near-field measurement techniques have been extended to ultra-wide-band, short-pulse transmitting and receiving antennas and transducers. By combining unencumbered straightforward derivations with in-depth expositions of prerequisite material, the authors have created an invaluable resource for research scientists and engineers in electromagnetics and acoustics, and a definitive reference on plane-wave expansions and near-field measurements. Featured topics include: * An introduction to the basic electromagnetic and acoustic field equations * A rigorous development of time-domain and frequency-domain plane-wave representations * The formulation of time-domain, frequency-domain, and static planar near-field measurement techniques with and without probe-correction * Sampling theorems and computation schemes for time-domain and frequency-domain fields * Analytic-signal formulas that simplify the formulation and analysis of transient fields * Wave phenomena, such as ``electromagnetic missiles"" encountered only in the time domain * Definitive force and power relations for electromagnetic and acoustic fields and sources." Sponsored by: IEEE Antennas and Propagation Society.

Book Electromagnetic Pulse Simulations Using Finite Difference Time Domain Method

Download or read book Electromagnetic Pulse Simulations Using Finite Difference Time Domain Method written by Shahid Ahmed and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method Discover the utility of the FDTD approach to solving electromagnetic problems with this powerful new resource Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method delivers a comprehensive overview of the generation and propagation of ultra-wideband electromagnetic pulses. The book provides a broad cross-section of studies of electromagnetic waves and their propagation in free space, dielectric media, complex media, and within guiding structures, like waveguide lines, transmission lines, and antennae. The distinguished author offers readers a fresh new approach for analyzing electromagnetic modes for pulsed electromagnetic systems designed to improve the reader’s understanding of the electromagnetic modes responsible for radiating far-fields. The book also provides a wide variety of computer programs, data analysis techniques, and visualization tools with state-of-the-art packages in MATLAB® and Octave. Following an introduction and clarification of basic electromagnetics and the frequency and time domain approach, the book delivers explanations of different numerical methods frequently used in computational electromagnetics and the necessity for the time domain treatment. In addition to a discussion of the Finite-difference Time-domain (FDTD) approach, readers will also enjoy: A thorough introduction to electromagnetic pulses (EMPs) and basic electromagnetics, including common applications of electromagnetics and EMP coupling and its effects An exploration of time and frequency domain analysis in electromagnetics, including Maxwell’s equations and their practical implications A discussion of electromagnetic waves and propagation, including waves in free space, dielectric mediums, complex mediums, and guiding structures A treatment of computational electromagnetics, including an explanation of why we need modeling and simulations Perfect for undergraduate and graduate students taking courses in physics and electrical and electronic engineering, Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method will also earn a place in the libraries of scientists and engineers working in electromagnetic research, RF and microwave design, and electromagnetic interference.

Book Time Domain Techniques in Computational Electromagnetics

Download or read book Time Domain Techniques in Computational Electromagnetics written by Dragan Poljak and published by Witpress. This book was released on 2004 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art review from invited contributors. Subjects covered include: time domain analysis of electromagnetic wave fields by boundary; integral equation method; and transient analysis of thin wires and related time domain energy measures.

Book Time Domain Electromagnetics

Download or read book Time Domain Electromagnetics written by Sadasiva Madiraju Rao and published by . This book was released on 1999 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Domain Electromagnetics is the first book devoted entirely to describing detailed coverage of tested time domain methods. This book is the ideal reference for the growing number of professional engineers and students interested in direct time domain methods used in calculating electromagnetic scattering/interaction phenomena.

Book Parallel Finite difference Time domain Method

Download or read book Parallel Finite difference Time domain Method written by Wenhua Yu and published by Artech House Publishers. This book was released on 2006 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate th.

Book Time Domain Measurements in Electromagnetics

Download or read book Time Domain Measurements in Electromagnetics written by Edmund K. Miller and published by Springer Science & Business Media. This book was released on 1986-11-30 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Essentials of Computational Electromagnetics

Download or read book Essentials of Computational Electromagnetics written by Xin-Qing Sheng and published by John Wiley & Sons. This book was released on 2012-03-22 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem

Book Advances in Time Domain Computational Electromagnetic Methods

Download or read book Advances in Time Domain Computational Electromagnetic Methods written by Qiang Ren and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Book Impulse Time Domain Electromagnetics of Continuous Media

Download or read book Impulse Time Domain Electromagnetics of Continuous Media written by Alex Shvartsburg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: tion of fields as a product of coordinate-dependent and time-dependent factors. The temporal variations of both media and fields are given by Fourier expansions. The successes of radiotechnique provided fertile ground for the dominance of sinusoidal waves in wave physics. This approach proved to be a powerful the oretical tool, since researchers were dealing with long trains of slowly varying quasi-monochromatic waves. However, the success of this concept and the stan dardizability of related designs engendered a peculiar psychological hypnosis of Fourier electromagnetics, which took over as a model for wave phenomena in such cross-discipIlnary areas of physics as optics and acoustics. Yet in providing a description of alternating fields, the presentation of such fields in terms of traveling waves with frequency wand wave number k is not a law of nature. One can see that such a presentation is not even a logical corollary of Maxwell's equations. What is more, this approach has become inadequate today for the analysis of fields excited by ultrashort transients in continuous media.

Book Electromagnetic Simulation Using the FDTD Method

Download or read book Electromagnetic Simulation Using the FDTD Method written by Dennis M. Sullivan and published by John Wiley & Sons. This book was released on 2013-05-17 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Book Time Domain Electromagnetics

    Book Details:
  • Author : Cynthia M. Furse
  • Publisher : IOP ebooks
  • Release : 2024-02-14
  • ISBN : 9780750323987
  • Pages : 0 pages

Download or read book Time Domain Electromagnetics written by Cynthia M. Furse and published by IOP ebooks. This book was released on 2024-02-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, aimed at researchers, practitioners and advanced students will bring the concepts of time and frequency domain reflectometry together, helping the reader develop a detailed understanding not only of each method, but of the relationships between them, and how they can each be used to their best advantage.

Book The Finite Difference Time Domain Method for Electromagnetics

Download or read book The Finite Difference Time Domain Method for Electromagnetics written by Karl S. Kunz and published by CRC Press. This book was released on 2018-05-04 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Book Electromagnetic and Photonic Simulation for the Beginner  Finite Difference Frequency Domain in MATLAB

Download or read book Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB written by Raymond C. Rumpf and published by Artech House. This book was released on 2022-01-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.