Download or read book Thermofluid Dynamics written by Michele Ciofalo and published by Springer Nature. This book was released on 2023-05-19 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers ten thermofluid dynamics problems involving the use of analytical solutions. All these problems have been encountered by the author during his research activity; some of the solutions are his own contributions, while others either are classic literature results or can be derived from them. The physical phenomena involved range from pure hydrodynamics to flow with heat or mass transfer, two-phase flow, and magnetohydrodynamics. The problems discussed are not canonical problems; they are rarely found in textbooks, and often exhibit surprising, or even paradoxical, solutions. The potential readership of the book includes students, teachers and scientists in science and engineering interested in fluid dynamics and heat/mass transfer: to them it may offer food for thought, suggestions for lectures or tutorials and ideas for further original developments.
Download or read book Thermofluid Dynamics of Turbulent Flows written by Michele Ciofalo and published by Springer Nature. This book was released on 2021-08-16 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides the theoretical fundamentals on turbulence and a complete overview of turbulence models, from the simplest to the most advanced ones including Direct and Large Eddy Simulation. It mainly focuses on problems of modeling and computation, and provides information regarding the theory of dynamical systems and their bifurcations. It also examines turbulence aspects which are not treated in most existing books on this subject, such as turbulence in free and mixed convection, transient turbulence and transition to turbulence. The book adopts the tensor notation, which is the most appropriate to deal with intrinsically tensor quantities such as stresses and strain rates, and for those who are not familiar with it an Appendix on tensor algebra and tensor notation are provided.
Download or read book Thermo fluid Dynamics of Two Phase Flow written by Mamoru Ishii and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.
Download or read book Infrared Thermography for Thermo Fluid Dynamics written by Tommaso Astarita and published by Springer Science & Business Media. This book was released on 2012-08-04 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infrared thermography is a measurement technique that enables to obtain non intrusive measurements of surface temperatures. One of the interesting features of this technique is its ability to measure a full two dimensional map of the surface temperature and for this reason it has been widely used as a flow visualization technique. Since the temperature measurements can be extremely accurate it is possible, by using a heat flux sensor, also to measure convective heat transfer coefficient distributions on a surface making the technique de facto quantitative. This book, starting from the basic theory of infrared thermography and heat flux sensor guides, both the experienced researcher and the young student, in the correct application of this powerful technique to various practical problems. A significant number of examples and applications are also examined in detail.
Download or read book Engineering Thermofluids written by Mahmoud Massoud and published by Springer Science & Business Media. This book was released on 2005-09-16 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermofluids, while a relatively modern term, is applied to the well-established field of thermal sciences, which is comprised of various intertwined disciplines. Thus mass, momentum, and heat transfer constitute the fundamentals of th- mofluids. This book discusses thermofluids in the context of thermodynamics, single- and two-phase flow, as well as heat transfer associated with single- and two-phase flows. Traditionally, the field of thermal sciences is taught in univer- ties by requiring students to study engineering thermodynamics, fluid mechanics, and heat transfer, in that order. In graduate school, these topics are discussed at more advanced levels. In recent years, however, there have been attempts to in- grate these topics through a unified approach. This approach makes sense as thermal design of widely varied systems ranging from hair dryers to semicond- tor chips to jet engines to nuclear power plants is based on the conservation eq- tions of mass, momentum, angular momentum, energy, and the second law of thermodynamics. While integrating these topics has recently gained popularity, it is hardly a new approach. For example, Bird, Stewart, and Lightfoot in Transport Phenomena, Rohsenow and Choi in Heat, Mass, and Momentum Transfer, El- Wakil, in Nuclear Heat Transport, and Todreas and Kazimi in Nuclear Systems have pursued a similar approach. These books, however, have been designed for advanced graduate level courses. More recently, undergraduate books using an - tegral approach are appearing.
Download or read book Thermofluid Dynamics written by A. J. Reynolds and published by . This book was released on 1971 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: For students of mechanical, aeronautical and chemical engineering in the first part of a degree course. Assumes no background in either thermodynamics or fluid mechanics but some knowledge of elementary physics and chemistry.
Download or read book Computational Thermo Fluid Dynamics written by Petr A. Nikrityuk and published by John Wiley & Sons. This book was released on 2011-09-19 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining previously unconnected computational methods, this monograph discusses the latest basic schemes and algorithms for the solution of fluid, heat and mass transfer problems coupled with electrodynamics. It presents the necessary mathematical background of computational thermo-fluid dynamics, the numerical implementation and the application to real-world problems. Particular emphasis is placed throughout on the use of electromagnetic fields to control the heat, mass and fluid flows in melts and on phase change phenomena during the solidification of pure materials and binary alloys. However, the book provides much more than formalisms and algorithms; it also stresses the importance of good, feasible and workable models to understand complex systems, and develops these in detail. Bringing computational fluid dynamics, thermodynamics and electrodynamics together, this is a useful source for materials scientists, PhD students, solid state physicists, process engineers and mechanical engineers, as well as lecturers in mechanical engineering.
Download or read book Thermofluids written by C. Marquand and published by . This book was released on 1994 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is concerned with the methods in which different types of energy are converted from one form to another. In particular, the book examines why so many of the energy conversion processes which involve heat have a low efficiency rating.
Download or read book Thermofluid Modeling for Energy Efficiency Applications written by Mohammad Masud Kamal Khan and published by Academic Press. This book was released on 2015-09-01 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology. Each chapter introduces relevant theories alongside detailed, real-life case studies that demonstrate the value of thermofluid modeling and simulation as an integral part of the engineering process. Research problems and modeling solutions across a range of energy efficiency scenarios are presented by experts, helping users build a sustainable engineering knowledge base. The text offers novel examples of the use of computation fluid dynamics in relation to hot topics, including passive air cooling and thermal storage. It is a valuable resource for academics, engineers, and students undertaking research in thermal engineering. - Includes contributions from experts in energy efficiency modeling across a range of engineering fields - Places thermofluid modeling and simulation at the center of engineering design and development, with theory supported by detailed, real-life case studies - Features hot topics in energy and sustainability engineering, including thermal storage and passive air cooling - Provides a valuable resource for academics, engineers, and students undertaking research in thermal engineering
Download or read book Introduction to Thermo Fluids Systems Design written by Andrè Garcia McDonald and published by John Wiley & Sons. This book was released on 2012-08-23 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design. Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer’s catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process. Key Features: Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design Practical rules-of-thumb are included in the text as ‘Practical Notes’ to underline their importance in current practice and provide additional information Includes an instructor’s manual hosted on the book’s companion website
Download or read book A Text Book In Basic Thermo Fluid Dynamics written by Mohammad R. a. Shaalan and published by Mohammad Raafat Shaalan. This book was released on 2022-04-19 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is recognized that the study of mechanical engineering is built of a number of engineering sciences, some of which are of basic nature whereas some other are of applied nature. "Basic Thermodynamics" and "Basic Fluid Dynamics" are probably the two most important basic engineering sciences in the build of a Mechanical Power Engineer. In applied mechanical power engineering sciences, the principles introduced and analysed in these two basic sciences are common divisors. In other words, we may look at these two branches of basic engineering sciences as two legs on which Mechanical Power Engineering applications appear to stand. The science of "Basic Thermodynamics " is based mainly on a number of basic principles (in the form of laws) that lead to a number of equations describing and governing the behavior of several mechanical power systems. It is therefore of particular importance to introduce and analyse such equations. It is also essential to relate these principles and equations to each other and, whenever possible, to pertinent phenomena and applications. This may be achieved via worked examples that stem from from engineering practice. The science of "Basic Fluid Dynamics" is another basic engineering science of equal importance to "Basic Thermodynamics". The principles introduced and analysed by this basic science find applications in almost all applied mechanical power engineering sciences. Examples of these applied sciences are "Applied Thermodynamics", "Applied Fluid Dynamics", "Combustion Engineering"," Turbo-machinery", "Refrigeration and Air-conditioning", "Power Plants", "Gas dynamics". "Propulsion systems" ….etc. Because of the close inter-relation between the science of basic thermodynamics and the science of basic fluid dynamics, it has become a common practice to contained both sciences in one textbook under the title “Basic Thermo/fluid Dynamics” (the title of the present textbook). The present textbook on "Basic Thermo/fluid Dynamics" has been divided into distinct parts: A and B. In part A, we concentrate on "Basic Thermodynamics", attempting to present, with as much clarity as possible, the basic principles therein and giving several worked examples for the sake of clarification. In part B, we concentrate on "Basic Fluid Dynamics", applying the same philosophy as in Part A. In this part also, a special section (in chapter five) containing a rather concise manipulation of the applied science of "Compressible Fluid (Gas) Dynamics" is presented, being an important combined application of the basic principles discussed in thermodynamics and fluid dynamics. Moreover, It was felt by the authors that it is particularly important to include this section on gas dynamics, since, in spite of being applied in nature, it is regarded by many as basic more than applied. The last chapter of Part A and chapter five of Part B cover some important engineering applications of the principles given apriori. Each of these applications may be looked upon as a brief exposition of an applied engineering science carrying the title of the application under consideration. This was felt imperative to the advantage hopefully to be gained by the student. The authors are indebted to their colleague Dr. Mohammad S.H. Emeara of the Mechanical Power Engineering Department, Zagazig University, for assisting with part of the illustrations and wish to thank him for rendering this assistance in the early stages of preparation of this textbook.
Download or read book Theoretical Computational and Experimental Solutions to Thermo Fluid Systems written by Muthukumar Palanisamy and published by Springer Nature. This book was released on 2021-03-09 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents select proceedings of the International Conference on Innovations in Thermo-Fluid Engineering and Sciences (ICITFES 2020). It covers topics in theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, multiphase flow, fluid machinery, fluid power, refrigeration and air conditioning, and cryogenics. The book will be helpful to the researchers, scientists, and professionals working in the field of fluid mechanics and machinery, and thermal engineering.
Download or read book Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists written by Meinhard T. Schobeiri and published by Springer Nature. This book was released on 2022-01-17 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current book, Advanced Fluid Mechanics and Heat Transfer is based on author's four decades of industrial and academic research in the area of thermofluid sciences including fluid mechanics, aero-thermodynamics, heat transfer and their applications to engineering systems. Fluid mechanics and heat transfer are inextricably intertwined and both are two integral parts of one physical discipline. No problem from fluid mechanics that requires the calculation of the temperature can be solved using the system of Navier-Stokes and continuity equations only. Conversely, no heat transfer problem can be solved using the energy equation only without using the Navier-Stokes and continuity equations. The fact that there is no book treating this physical discipline as a unified subject in a single book that considers the need of the engineering and physics community, motivated the author to write this book. It is primarily aimed at students of engineering, physics and those practicing professionals who perform aero-thermo-heat transfer design tasks in the industry and would like to deepen their knowledge in this area. The contents of this new book covers the material required in Fluid Mechanics and Heat Transfer Graduate Core Courses in the US universities. It also covers the major parts of the Ph.D-level elective courses Advanced Fluid Mechanics and Heat Transfer that the author has been teaching at Texas A&M University for the past three decades.
Download or read book Application of Thermo fluid Processes in Energy Systems written by M. Masud K. Khan and published by Springer. This book was released on 2017-10-03 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides essential information on and case studies in the fields of energy technology, clean energy, energy efficiency, sustainability and the environment relevant to academics, researchers, practicing engineers, technologists and students. The individual chapters present cutting-edge research on key issues and recent developments in thermo-fluid processes, including but not limited to: energy technologies in process industries, applications of thermo-fluid processes in mining industries, applications of electrostatic precipitators in thermal power plants, biofuels, energy efficiency in building systems, etc. Helping readers develop an intuitive understanding of the relevant concepts in and solutions for achieving sustainability in medium and large-scale industries, the book offers a valuable resource for undergraduate, honors and postgraduate research students in the field of thermo-fluid engineering.
Download or read book Introduction to Computational Fluid Dynamics written by Anil W. Date and published by Cambridge University Press. This book was released on 2005-08-08 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.
Download or read book Computational Fluid Dynamics with Moving Boundaries written by Wei Shyy and published by Courier Corporation. This book was released on 2012-08-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text describes several computational techniques that can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics involving moving flow boundaries. Step-by-step discussions of numerical procedures include multiple examples that employ algorithms in problem-solving. In addition to its survey of contemporary numerical techniques, this volume discusses formulation and computation strategies as well as applications in many fields. Researchers and professionals in aerospace, chemical, mechanical, and materials engineering will find it a valuable resource. It is also an appropriate textbook for advanced courses in fluid dynamics, computation fluid dynamics, heat transfer, and numerical methods.
Download or read book Fundamentals of Thermal fluid Sciences written by Yunus A. Çengel and published by McGraw-Hill Company. This book was released on 2012 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE FOURTH EDITION IN SI UNITS of Fundamentals of Thermal-Fluid Sciences presents a balanced coverage of thermodynamics, fluid mechanics, and heat transfer packaged in a manner suitable for use in introductory thermal sciences courses. By emphasizing the physics and underlying physical phenomena involved, the text gives students practical examples that allow development of an understanding of the theoretical underpinnings of thermal sciences. All the popular features of the previous edition are retained in this edition while new ones are added. THIS EDITION FEATURES: A New Chapter on Power and Refrigeration Cycles The new Chapter 9 exposes students to the foundations of power generation and refrigeration in a well-ordered and compact manner. An Early Introduction to the First Law of Thermodynamics (Chapter 3) This chapter establishes a general understanding of energy, mechanisms of energy transfer, and the concept of energy balance, thermo-economics, and conversion efficiency. Learning Objectives Each chapter begins with an overview of the material to be covered and chapter-specific learning objectives to introduce the material and to set goals. Developing Physical Intuition A special effort is made to help students develop an intuitive feel for underlying physical mechanisms of natural phenomena and to gain a mastery of solving practical problems that an engineer is likely to face in the real world. New Problems A large number of problems in the text are modified and many problems are replaced by new ones. Some of the solved examples are also replaced by new ones. Upgraded Artwork Much of the line artwork in the text is upgraded to figures that appear more three-dimensional and realistic. MEDIA RESOURCES: Limited Academic Version of EES with selected text solutions packaged with the text on the Student DVD. The Online Learning Center (www.mheducation.asia/olc/cengelFTFS4e) offers online resources for instructors including PowerPoint® lecture slides, and complete solutions to homework problems. McGraw-Hill's Complete Online Solutions Manual Organization System (http://cosmos.mhhe.com/) allows instructors to streamline the creation of assignments, quizzes, and tests by using problems and solutions from the textbook, as well as their own custom material.