Download or read book Commencement written by Iowa State University and published by . This book was released on 2008 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ferrous Physical Metallurgy written by Anil Kumar Sinha and published by Butterworth-Heinemann. This book was released on 1989 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of the interrelationships among phase diagram, free-energy- composition diagram, kinetics of phase transformation, microstructure, property, and processing for better understanding the behavior of metallic materials. The focus is on both the theoretical elements such as those dealing with deformation, annealing phenomena, nuclation in solids, phase transformations in solids, and kinetics of phase transformations, and the processing elements such as those dealing with heat treatment operations. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book Frontiers in Materials Modelling and Design written by Vijay Kumar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is about fifteen years since we started hearing about Computational Ma terials Science and Materials Modelling and Design. Fifteen years is a long time and all of us realise that the use of computational methods in the design of materials has not been rapid enough. We also know the reasons for this. Mate rials properties are not dependent on a single phenomenon. The properties of materials cover a wide range from electronic, thermal, mechanical to chemical and electro-chemical. Each of these class of properties depend on specific phe nomenon that takes place at different scales or levels of length from sub atomic to visible length levels. The energies controlling the phenomena also varies widely from a fraction of an electron volt to many joules. The complexity of materials are such that while models and methods for treating individual phenomenon have been perfected, incorporating them into a single programme taking into account the synergism is a formidable task. Two specific areas where the progress has been very rapid and substantive are prediction of phase stability and phase diagrams and embrittlement of steels by metalloids. The first three sections of the book contain papers which review the theoreti cal principles underlying materials modeling and simulations and show how they can be applied to the problems just mentioned. There is now a strong interest in designing new materials starting from nanoparticles and clusters.
Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Download or read book Nanoalloys written by Florent Calvo and published by Newnes. This book was released on 2013-03-12 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoalloys: From Fundamentals to Emergent Applications presents and discusses the major topics related to nanoalloys at a time when the literature on the subject remains scarce. Particular attention is paid to experimental and theoretical aspects under the form of broad reviews covering the most recent developments. The book is organized into 11 chapters covering the most fundamental aspects of nanoalloys related to their synthesis and characterization, as well as their theoretical study. Aspects related to their thermodynamics and kinetics are covered as well. The coverage then moves to more specific topics, including optics, magnetism and catalysis, and finally to biomedical applications and the technologically relevant issue of self-assembly.With no current single reference source on the subject, the work is invaluable for researchers as the nanoscience field moves swiftly to full monetization. - Encapsulates physical science of structure, properties, size, composition and ordering at nanoscale, aiding synthesis of experimentation and modelling - Multi-expert and interdisciplinary perspectives on growth, synthesis and characterization of bimetallic clusters and particulates supports expansion of your current research activity into applications - Synthesizes concepts and draws links between fundamental metallurgy and cutting edge nanoscience, aiding interdisciplinary research activity
Download or read book Hydrogen in Intermetallic Compounds II written by Louis Schlapbach and published by Springer Science & Business Media. This book was released on 2006-01-21 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of hydrogen in an on metals and alloys is important in a number ofdisciplines including solid-state physics, materials science, physical chemistry, and energy technology. This volume treats the dynamics of hydrogen in intermetallic compounds, surface properties, kinetics, and applications of metal hydrides in energy technology. In addition, selected experimental methods are described. The introductory chapter will enable non-specialists to gain an overall picture of the field and to appreciate the relevant scientific issue. The companion volume, Hydrogene in Intermetallic Compounds I, was published as Vol. 63 of Topics in Applied Physics.
Download or read book Metal Nanoparticles and Nanoalloys written by Roy L. Johnston and published by Elsevier. This book was released on 2012-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of nanoscience has undergone tremendous growth in the past decade as the number of applications of nanoparticles and nanostructured materials have proliferated. Metal nanoparticles have attracted particular interest due to their potential for applications in areas as diverse as catalysis, medicine and opto-electronics. The chemical and physical properties of metal nanoparticles can vary smoothly or discontinuously with nanoparticle size, depending on the size regime and the property. In the case of bi- or multimetallic nanoparticles ("nanoalloys"), these properties also depend on the elemental composition and the chemical ordering - how the metals are distributed in the nanoparticles.It is this tunability of behavior that makes metal nanoparticles and nanoalloys so versatile and appealing. This book begins with a tutorial introducing the theoretical ideas and models that have been developed to understand metal nanoparticles. It gives an overview of experimental methods for generating and characterizing metal nanoparticles and nanoalloys and of their properties and applications, providing an introduction to material covered in more depth in subsequent chapters. A major theme of all the chapters is the effect of nanoparticle size, shape and surface chemistry on their properties - especially optical and catalytic properties. A unified discussion of the inter-relations between modelling, synthesis and physical properties of nanoparticles and nanoalloys A discussion of the most promising new catalytic and photocatalytic applications of nanoparticles and the approaches used to achieve these goals A tutorial introduction which provides a basis for understanding the subsequent specialized chapters
Download or read book Positrons in Solids written by P. Hautojärvi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: In condensed matter initially fast positrons annihilate after having reached equi librium with the surroundings. The interaction of positrons with matter is governed by the laws of ordinary quantum mechanics. Field theory and antiparticle properties enter only in the annihilation process leading to the emergence of energetic photons. The monitoring of annihilation radiation by nuclear spectroscopic methods provides valuable information on the electron-positron system which can directly be related to the electronic structure of the medium. Since the positron is a positive electron its behavior in matter is especially interesting to solid-state and atomic physi cists. The small mass quarantees that the positron is really a quantum mechanical particle and completely different from any other particles and atoms. Positron physics started about 25 years ago but discoveries of new features in its interac tion with matter have maintained continuous interest and increasing activity in the field. Nowadays it is becoming part of the "stock-in-trade" of experimental physics.
Download or read book New Trends in Intercalation Compounds for Energy Storage written by Christian Julien and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.
Download or read book Computations for the Nano Scale written by P.E. Blöchl and published by Springer Science & Business Media. This book was released on 1993-06-30 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, Aspet, France, October 12-16, 1992
Download or read book Materials for Tomorrow written by Sibylle Gemming and published by Springer Science & Business Media. This book was released on 2007-03-07 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains six chapters on central topics in materials science. Each is written by specialists and gives a state-of-art presentation of the subject for graduate students and scientists not necessarily working in that field. Computer simulations of new materials, theory and experimental work are all extensively discussed. Most of the topics discussed have a bearing on nanomaterials and nanodevices.
Download or read book Electron Momentum Spectroscopy written by Erich Weigold and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a complete account of electron momentum spectroscopy to date. It describes in detail the construction of spectrometers and the acquisition and reduction of cross-section data, explaining the quantum theory of the reaction and giving experimental verification.
Download or read book Nanoscale Magnetic Materials and Applications written by J. Ping Liu and published by Springer Science & Business Media. This book was released on 2010-04-05 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.
Download or read book Innovating Science Teacher Education written by Mansoor Niaz and published by Routledge. This book was released on 2010-09-13 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops innovative strategies based on actual classroom practice for teaching topics such the nature of science, conceptual change, constructivism, qualitative-quantitative research, and the role of controversies, presuppositions, speculations, hypotheses, and predictions. Field-tested in science education courses, this book is designed to involve readers in critically thinking about the history and philosophy of science and to engage science educators in learning how to progressively introduce various aspects of ‘science-in-the-making’ in their classrooms, to promote discussions highlighting controversial historical episodes included in the science curriculum, and to expose their students to the controversies and encourage them to support, defend or critique the different interpretations. Innovating Science Teacher Education offers guidelines to go beyond traditional textbooks, curricula, and teaching methods and innovate with respect to science teacher education and classroom teaching.
Download or read book Metal Clusters and Nanoalloys written by Marcelo Mario Mariscal and published by Springer. This book was released on 2012-07-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metallic nanoparticles hold promise for their potential applications in a wide array of disciplines ranging from materials science to medicine. This book brings the power of theoretical methods to an audience of experimentalists, and explicates the simulation of metallic clusters and nanoparticles. It begins with a summary of the current state of research on metallic nanoparticles, then moves on to the current state of the art in theory of metallic nanoparticldes, and then explains why and how these tools help experimentalists. Contributions are provided by renowned experts in the field from across the world.
Download or read book Quantum Theory of Condensed Matter written by Bertrand I. Halperin and published by World Scientific. This book was released on 2010 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since 1911, the Solvay Conferences have shaped modern physics. The 24th edition chaired by Bertrand Halperin did not break the tradition. Held in October 2008, it gathered in Brussels most of the leading figures working on the ?quantum theory of condensed matter?, addressing some of the most profound open problems in the field. The proceedings contain the ?rapporteur talks? giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions treating: mesoscopic and disordered systems; exotic phases and quantum phase transitions in model systems; experimentally realized correlated-electron materials; quantum Hall systems, and one-dimensional systems; systems of ultra-cold atoms, and advanced computational methods. In the Solvay tradition, the proceedings include also the prepared comments to the rapporteur talks. The discussions among the participants ? some of which are quite lively and involving dramatically divergent points of view ? have been carefully edited and reproduced in full.
Download or read book The Effects of Relativity in Atoms Molecules and the Solid State written by Stephen Wilson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a growing interest in the effects of relativity in atoms, molecules and solids. On the one hand, this can be seen as result of the growing awareness of the importance of relativity in describing the properties of heavy atoms and systems containing them. This has been fueled by the inadequacy of physical models which either neglect relativity or which treat it as a small perturbation. On the other hand, it is dependent upon the technological developments which have resulted in computers powerful enough to make calculations on heavy atoms and on systems containing heavy atoms meaningful. Vector processing and, more recently, parallel processing techniques are playing an increasingly vital role in rendering the algorithms which arise in relativistic studies tractable. This has been exemplified in atomic structure theory, where the dominant role of the central nuclear charge simplifies the problem enough to permit some prediction to be made with high precision, especially for the highly ionized atoms of importance in plasma physics and in laser confinement studies. Today's sophisticated physical models of the atom derived from quantum electrodynamics would be intractable without recourse to modern computational machinery. Relativistic atomic structure calculations have a history dating from the early attempts of Swirles in the mid 1930's but continue to provide one of the primary test beds of modern theoretical physics.