EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Thermo Hydro Mechanical Behavior of Conductive Fractures Using a Hybrid Finite Difference   Displacement Discontinuity Method

Download or read book Thermo Hydro Mechanical Behavior of Conductive Fractures Using a Hybrid Finite Difference Displacement Discontinuity Method written by Mohammadreza Jalali and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Large amounts of hydrocarbon reserves are trapped in fractured reservoirs where fluid flux is far more rapid along fractures than through the porous matrix, even though the volume of the pore space may be a hundred times greater than the volume of the fractures. These are considered extremely challenging in terms of accurate recovery prediction because of their complexity and heterogeneity. Conventional reservoir simulators are generally not suited to naturally fractured reservoirs' production history simulation, especially when production processes are associated with large pressure and temperature changes that lead to large redistribution of effective stresses, causing natural fracture aperture alterations. In this case, all the effective processes, i.e. hydraulic, thermal and geomechanical, should be considered simultaneously to explain and evaluate the behavior of stress-sensitive reservoirs over the production period. This is called thermo-hydro-mechanical (THM) coupling. In this study, a fully coupled thermo-hydro-mechanical approach is developed to simulate the physical behavior of fractures in a plane strain thermo-poroelastic medium. A hybrid numerical method, which implements both the finite difference method (FDM) and the displacement discontinuity method (DDM), is established to study the pressure, temperature, deformation and stress variations of fractures and surrounding rocks during production processes. This method is straightforward and can be implemented in conventional reservoir simulators to update fracture conductivity as it uses the same grid block as the reservoir grids and requires only discretization of fractures. The hybrid model is then verified with couple of analytical solutions for the fracture aperture variation under different conditions. This model is implemented for some examples to present the behavior of fracture network as well as its surrounding rock under thermal injection and production. The results of this work clearly show the importance of rate, aspect ratio (i.e. geometry) and the coupling effects among fracture flow rate and aperture changes arising from coupled stress, pressure and temperature changes. The outcomes of this approach can be used to study the behavior of hydraulic injection for induced fracturing and promoting of shearing such as hydraulic fracturing of shale gas or shale oil reservoirs as well as massive waste disposal in the porous carbonate rocks. Furthermore, implementation of this technique should be able to lead to a better understanding of induced seismicity in injection projects of all kinds, whether it is for waste water disposal, or for the extraction of geothermal energy.

Book Geotechnical Synergy in Buenos Aires 2015

Download or read book Geotechnical Synergy in Buenos Aires 2015 written by A.O. Sfriso and published by IOS Press. This book was released on 2015-12-10 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: In November 2015, Buenos Aires, Argentina became the location of several important events for geo-professionals, with the simultaneous holding of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XV PCSMGE), the 8th South American Congress on Rock Mechanics (SCRM) and the 6th International Symposium on Deformation Characteristics of Geomaterials, as well as the 22nd Argentinean Congress of Geotechnical Engineering (CAMSIGXXII). This synergy brought together international experts, researchers, academics, professionals and geo-engineering companies in a unique opportunity to exchange ideas and discuss current and future practices in the areas of soil mechanics and rock mechanics, and their applications in civil, energy, environmental, and mining engineering. This book presents the invited lectures of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XV PCSMGE) and the 8th South American Congress on Rock Mechanics (SCRM). It includes the Casagrande Lecture delivered by Luis Valenzuela and 21 Plenary, Keynote and Panelist Lectures from these two Buenos Aires conferences.

Book Thermo Hydro Mechanical Coupling in Fractured Rock

Download or read book Thermo Hydro Mechanical Coupling in Fractured Rock written by Hans-Joachim Kümpel and published by Birkhäuser. This book was released on 2012-12-06 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: (4). The next three papers extend these views by taking a closer look on parameters that govern hydraulic diffusivity in sandstones and other types of rocks. Specific targets addressed are the influence of differential stress on permeability (5), imaging of the fracture geometry (6), and pressure induced variations in the pore geometry (7). Contributions no. 8 to 10 cover investigations of permeability-porosity relationships during rock evolution (8), of the formation, propagation, and roughness of fractures in a plexi-glass block (9), and pressure oscillation effects of two-phase flow under controlled conditions (10). The subsequent four articles focus on diverse modeling approaches. Issues considered are how the geometry and the mechanical behavior of fractures can be characterized by mathematical expressions (11), how the evolution of permeability in a microcracking rock can be expressed by an analytical model (12), deviations from the cubic law for a fracture of varying aperture (13), and the numerical simulation of scale effects in flow through fractures (14). Three further papers refer to in situ observations, being related to topics as the assessment of in situ permeability from the spatio temporal distribution of an aftershock sequence (15), to the scale dependence of hydraulic pathways in crystalline rock (16), and to the significance of pore pressure - stress coupling in deep tunnels and galleries (17).

Book Coupled Thermo Hydro Mechanical Processes of Fractured Media

Download or read book Coupled Thermo Hydro Mechanical Processes of Fractured Media written by O. Stephanson and published by Elsevier. This book was released on 1997-02-10 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work brings together the results, information and data that emerged from an international cooperative project, DECOVALEX, 1992-1995. This project was concerned with the mathematical and experimental studies of coupled thermo(T) -hydro(H) -mechanical(M) processes in fractured media related to radioactive waste disposal. The book presents, for the first time, the systematic formulation of mathematical models of the coupled T-H-M processes of fractured media, their validation against theoretical bench-mark tests, and experimental studies at both laboratory and field scales. It also presents, for the first time, a comprehensive analysis of continuum, and discrete approaches to the study of the problems of (as well as a complete description of), the computer codes applied to the studies. The first two chapters provide a conceptual introduction to the coupled T-H-M processes in fractured media and the DECOVALEX project. The next seven chapters give a state-of-the-art survey of the constitutive models of rock fractures and formulation of coupled T-H-M phenomena with continuum and discontinuum approaches, and associated numerical methods. A study on the three generic Bench-Mark Test problems and six Test Case problems of laboratory and field experiments are reported in chapters 10 to 18. Chapter 19 contains lessons learned during the project. The research contained in this book will be valuable for designers, practising engineers and national waste management officials who are concerned with planning, design and performance, and safety assessments of radioactive waste repositories. Researchers and postgraduate students working in this field will also find the book of particular relevance.

Book Thermo hydro mechanical Analysis of Fractures and Wellbores in Petroleum Geothermal Reservoirs

Download or read book Thermo hydro mechanical Analysis of Fractures and Wellbores in Petroleum Geothermal Reservoirs written by Mohammadreza Safariforoshani and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic displacement discontinuity and stress discontinuity methods are elaborated for infinite media. Furthermore, injection/production-induced mass and heat transport inside fractures are studied by coupling the displacement discontinuity method with the finite element method. The resulting method is then used to simulate problems of interest in wellbores and fractures for related to drilling and stimulation. In the examination of fracture deformation, the nonlinear behavior of discontinuities and the change in status from joint (hydraulically open, mechanically closed) to hydraulic fracture (hydraulically open, mechanically open) are taken into account. Examples are presented to highlight the versatility of the method and the role of thermal and hydraulic effects, three-dimensionality, hydraulic/natural fracture deformation, and induced micro earthquakes. Specifically, injection/extraction operations in enhanced geothermal reservoirs and hydraulic/thermal stimulation of fractured reservoirs are studied and analyzed with reference to induced seismicity. In addition, the fictitious stress method is used to study three-dimensional wellbore stresses in the presence of a weakness plane. It is shown that the coupling of hydro-thermo-mechanical processes plays a very important role in low-permeability reservoirs and should be considered when predicting the behavior of fractures and wellbores. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151272

Book Numerical Modeling of Hydraulic Fracture Propagation Using Thermo hydro mechanical Analysis with Brittle Damage Model by Finite Element Method

Download or read book Numerical Modeling of Hydraulic Fracture Propagation Using Thermo hydro mechanical Analysis with Brittle Damage Model by Finite Element Method written by Kyoung Min and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Better understanding and control of crack growth direction during hydraulic fracturing are essential for enhancing productivity of geothermal and petroleum reservoirs. Structural analysis of fracture propagation and impact on fluid flow is a challenging issue because of the complexity of rock properties and physical aspects of rock failure and fracture growth. Realistic interpretation of the complex interactions between rock deformation, fluid flow, heat transfer, and fracture propagation induced by fluid injection is important for fracture network design. In this work, numerical models are developed to simulate rock failure and hydraulic fracture propagation. The influences of rock deformation, fluid flow, and heat transfer on fracturing processes are studied using a coupled thermo-hydro-mechanical (THM) analysis. The models are used to simulate microscopic and macroscopic fracture behaviors of laboratory-scale uniaxial and triaxial experiments on rock using an elastic/brittle damage model considering a stochastic heterogeneity distribution. The constitutive modeling by the energy release rate-based damage evolution allows characterizing brittle rock failure and strength degradation. This approach is then used to simulate the sequential process of heterogeneous rock failures from the initiation of microcracks to the growth of macrocracks. The hydraulic fracturing path, especially for fractures emanating from inclined wellbores and closed natural fractures, often involves mixed mode fracture propagation. Especially, when the fracture is inclined in a 3D stress field, the propagation cannot be modeled using 2D fracture models. Hence, 2D/3D mixed-modes fracture growth from an initially embedded circular crack is studied using the damage mechanics approach implemented in a finite element method. As a practical problem, hydraulic fracturing stimulation often involves fluid pressure change caused by injected fracturing fluid, fluid leakoff, and fracture propagation with brittle rock behavior and stress heterogeneities. In this dissertation, hydraulic fracture propagation is simulated using a coupled fluid flow/diffusion and rock deformation analysis. Later THM analysis is also carried out. The hydraulic forces in extended fractures are solved using a lubrication equation. Using a new moving-boundary element partition methodology (EPM), fracture propagation through heterogeneous media is predicted simply and efficiently. The method allows coupling fluid flow and rock deformation, and fracture propagation using the lubrication equation to solve for the fluid pressure through newly propagating crack paths. Using the proposed model, the 2D/3D hydraulic fracturing simulations are performed to investigate the role of material and rock heterogeneity. Furthermore, in geothermal and petroleum reservoir design, engineers can take advantage of thermal fracturing that occurs when heat transfers between injected flow and the rock matrix to create reservoir permeability. These thermal stresses are calculated using coupled THM analysis and their influence on crack propagation during reservoir stimulation are investigated using damage mechanics and thermal loading algorithms for newly fractured surfaces. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/150961

Book Three Dimensional Crack Problems

Download or read book Three Dimensional Crack Problems written by M.K. Kassir and published by Springer. This book was released on 1975-04-30 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Combined Finite Discrete Element Method

Download or read book The Combined Finite Discrete Element Method written by Antonio A. Munjiza and published by John Wiley & Sons. This book was released on 2004-04-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.

Book Extended Finite Element Method

Download or read book Extended Finite Element Method written by Amir R. Khoei and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-08-27
  • ISBN : 0309049962
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Mechanical Behavior of Materials

Download or read book Mechanical Behavior of Materials written by Norman E. Dowling and published by Prentice Hall. This book was released on 2007 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive in scope and readable, this book explores the methods used by engineers to analyze and predict the mechanical behavior of materials. Author Norman E. Dowling provides thorough coverage of materials testing and practical methods for forecasting the strength and life of mechanical parts and structural members.

Book Nonlinear Finite Element Analysis of Solids and Structures

Download or read book Nonlinear Finite Element Analysis of Solids and Structures written by René de Borst and published by John Wiley & Sons. This book was released on 2012-07-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist René de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature. Key features: Combines the two previous volumes into one heavily revised text with obsolete material removed, an improved layout and updated references and notations Extensive new material on more recent developments in computational mechanics Easily readable, engineering oriented, with no more details in the main text than necessary to understand the concepts. Pseudo-code throughout makes the link between theory and algorithms, and the actual implementation. Accompanied by a website (www.wiley.com/go/deborst) with a Python code, based on the pseudo-code within the book and suitable for solving small-size problems. Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition is an essential reference for practising engineers and researchers that can also be used as a text for undergraduate and graduate students within computational mechanics.

Book Applied mechanics reviews

Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finite Element Method and Applications in Engineering Using ANSYS

Download or read book The Finite Element Method and Applications in Engineering Using ANSYS written by Erdogan Madenci and published by Springer. This book was released on 2015-02-10 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniques and mesh generation in ANSYS® • Weighted residuals and minimum potential energy • Development of macro files • Linear structural analysis • Heat transfer and moisture diffusion • Nonlinear structural problems • Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS®-GUI Electronic supplementary material for using ANSYS® can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader’s own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."

Book Fractured Porous Media

    Book Details:
  • Author : Pierre M. Adler
  • Publisher : Oxford University Press, USA
  • Release : 2013
  • ISBN : 0199666512
  • Pages : 184 pages

Download or read book Fractured Porous Media written by Pierre M. Adler and published by Oxford University Press, USA. This book was released on 2013 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.

Book Bioinspired Structures and Design

Download or read book Bioinspired Structures and Design written by Wole Soboyejo and published by Cambridge University Press. This book was released on 2020-09-17 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.

Book Approximation of Free Discontinuity Problems

Download or read book Approximation of Free Discontinuity Problems written by Andrea Braides and published by Springer Science & Business Media. This book was released on 1998-09-17 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.