Download or read book Fundamentals of Thermophotovoltaic Energy Conversion written by Donald Chubb and published by Elsevier. This book was released on 2007-05-11 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Each chapter includes a summary and concludes with a set of problems.The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance the emitter efficiency is calculated. Chapter 4 discusses interference, plasma and resonant array filters plus an interference filter with an imbedded metallic layer, a combined interference-plasma filter and spectral control using a back surface reflector(BSR) on the PV array. The theory necessary to calculate the optical properties of these filters is presented. Chapter 5 presents the fundamentals of semiconductor PV cells. Using transport equations calculation of the current-voltage relation for a PV cell is carried out. Quantum efficiency, spectral response and the electrical equivalent circuit for a PV cell are introduced so that the PV cell efficiency and power output can be calculated.The final three chapters of the book consider the combination of the emitter, filter and PV array that make up the optical cavity of a TPV system. Chapter 6 applies radiation transfer theory to calculate the cavity efficiency of planar and cylindrical optical cavities. Also introduced in Chapter 6 are the overall TPV efficiency, thermal efficiency and PV efficiency. Leakage of radiation out of the optical cavity results in a significant loss in TPV efficiency. Chapter 7 considers that topic. The final chapter presents a model for a planar TPV system.Six appendices present background information necessary to carry out theoretical developments in the text. Two of the appendices include Mathematica programs for the spectral optical properties of multi-layer interference filters and a planar TPV system. Software is included for downloading all the programs within the book. - First text written on thermophotovoltaic(TPV) energy conversion - Includes all the necessary theory to calculate TPV system performance - Author has been doing TPV energy conversion research since 1980's - Emphasizes the fundamentals of TPV energy conversion - Includes a summary and problem set at the end of each chapter - Includes Mathematica programs for calculating optical properties of interference filters and planar TPV system performance solution software
Download or read book Recent Development in Energy Conversion Systems written by Sunday Olayinka Oyedepo and published by Frontiers Media SA. This book was released on 2024-03-15 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this industrial and technological age, energy plays a principal role in sustainable development. This is connected to issues regarding availability, production processes, utilization, and environmental impact. Due to the increased rate of population growth, the energy demand in the entire world is getting to the level that it may not be sustained in the nearest future if drastic action is not taken to address the situation, especially from research and development perspectives. "None of the millennium development goals (MDGs) can be completed without considerable improvements in the quality and quantity of energy services in developing countries," according to the United Nations Development Programme (UNDP). Based on this fact, UNDP is making efforts, especially in developing countries to ensure that people have access to sustainable sources of clean, reliable, and affordable energy since every aspect of human development is highly impacted by this vital resource.
Download or read book Springer Handbook of Condensed Matter and Materials Data written by Werner Martienssen and published by Springer Science & Business Media. This book was released on 2006-09-21 with total page 1143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200 page volume. The data, encapsulated in 914 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the prominent Springer Handbook editors, W. Martienssen and H. Warlimont themselves. The Handbook is designed to be useful as a desktop reference for fast and easy retrieval of essential and reliable data in the lab or office. References to more extensive data sources are also provided in the book and by interlinking to the relevant sources on the enclosed CD-ROM. Physicists, chemists and engineers engaged in fields of solid-state sciences and materials technologies in research, development and application will appreciate the ready access to the key information coherently organized within this wide-ranging Handbook. From the reviews: "...this is the most complete compilation I have ever seen... When I received the book, I immediately searched for data I never found elsewhere..., and I found them rapidly... No doubt that this book will soon be in every library and on the desk of most solid state scientists and engineers. It will never be at rest." -Physicalia Magazine
Download or read book Thermoplasmonics written by Guillaume Baffou and published by Cambridge University Press. This book was released on 2017-10-19 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.
Download or read book Photovoltaic Solar Energy Conversion written by Gottfried H. Bauer and published by Springer. This book was released on 2015-04-16 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.
Download or read book Energy Saving Coating Materials written by Goutam Kumar Dalapati and published by Elsevier. This book was released on 2020-05-14 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy Saving Coating Materials: Design, Process, Implementation and Developments provides comprehensive information regarding recent materials advancements and design aspects and integration for infra-red radiation regulators, along with future developments of zero emission buildings. The key opportunities and challenges for the usage of existing heat regulation materials and their implementation for commercial aspects are explored. The fundamental interaction between electromagnetic waves and materials are discussed, along with materials synthesis, design and integration of coatings for smart window applications. This book presents recent developments of innovative technologies comprising energy saving materials and coatings which are key considerations for achieving vital energy saving milestones. - Provides knowledge-based information on the optical properties of materials and their utility for solar energy harvesting and energy saving applications - Discusses innovative coatings for smart windows applications, including the progressive development of radiative cooling and cool paint - Previews future developments for the synthesis, design and integration of heat regulative materials
Download or read book Photon Management in Solar Cells written by Ralf B. Wehrspohn and published by John Wiley & Sons. This book was released on 2015-06-08 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, applied and surface physicists.
Download or read book Concentrating Solar Power Technology written by Keith Lovegrove and published by Elsevier. This book was released on 2012-10-19 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentrating solar power (CSP) technology is poised to take its place as one of the major contributors to the future clean energy mix. Using straightforward manufacturing processes, CSP technology capitalises on conventional power generation cycles, whilst cost effectively matching supply and demand though the integration of thermal energy storage. Concentrating solar power technology provides a comprehensive review of this exciting technology, from the fundamental science to systems design, development and applications.Part one introduces fundamental principles of concentrating solar power systems. Site selection and feasibility analysis are discussed, alongside socio-economic and environmental assessments. Part two focuses on technologies including linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems. Thermal energy storage, hybridization with fossil fuel power plants and the long-term market potential of CSP technology are explored. Part three goes on to discuss optimisation, improvements and applications. Topics discussed include absorber materials for solar thermal receivers, design optimisation through integrated techno-economic modelling, heliostat size optimisation, heat flux and temperature measurement technologies, concentrating solar heating and cooling for industrial processes, and solar fuels and industrial solar chemistry.With its distinguished editors and international team of expert contributors, Concentrating solar power technology is an essential guide for all those involved or interested in the design, production, development, optimisation and application of CSP technology, including renewable energy engineers and consultants, environmental governmental departments, solar thermal equipment manufacturers, researchers and academics. - Provides a comprehensive review of concentrating solar power (CSP) technology, from the fundamental science to systems design, development and applications - Reviews fundamental principles of concentrating solar power systems, including site selection and feasibility analysis and socio-economic and environmental assessments - Provides an overview of technologies such as linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems
Download or read book Infrared Nanophotonics written by Tadaaki Nagao and published by MDPI. This book was released on 2021-04-21 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infrared light radiates from almost all the matter on earth, and its strategic use will be an important issue for the enhancement of human life and the sustainable development of modern industry. Since its frequency is in the same region as phonons or molecular vibrations of materials, measuring its emission or absorption spectra helps us in characterizing and identifying materials in a non-destructive manner. Meanwhile, if we can spectroscopically design infrared emission by tuning chemical composition or artificially controlling nano- to mesoscale structures, this will have a great impact on industrial applications, such as thermophotovoltaics, energy-saving drying furnaces, spectroscopic infrared light sources, and various types of infrared sensors. In this Special Issue, we encourage submissions from researchers who are working on infrared nanophotonics based on MEMS/NEMS, and nanomaterials science, ranging from materials synthesis, to device fabrications, electromagnetic simulations, and thermal managements. Important topics of growing interest are wavelength-selective infrared emitters and detectors, where we can see rapid development in the fields of nano-plasmonics and metamaterials, and we invite such topics for inclusion in this Special Issue. We also encourage submissions on nano-materials science such as on graphene-based infrared detectors/emitters, and nanostructured narrow-band gap semiconductors.
Download or read book Complete Confined Spaces Handbook written by John F. Rekus and published by CRC Press. This book was released on 2018-05-04 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides plant managers, supervisors, safety professionals, and industrial hygienists with recommended procedures and guidance for safe entry into confined spaces. It reviews selected case histories of confined space accidents, including multiple fatalities, and discusses how a confined space entry program could have prevented them. It outlines the requirements of the OSHA permit-entry confined space standard and provides detailed explanations of requirements for lockout/tagout, air sampling, ventilation, emergency planning, and employee training. The book is filled with more than 100 line drawings and more than 150 photographs.
Download or read book Energy Materials Based Novel Solar Thermal Applications written by Muhammad Amjad and published by Frontiers Media SA. This book was released on 2024-07-11 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: With increasing apprehensions over global warming and environmental issues, the need to develop renewable energy is becoming more critical to secure our future energy needs. Solar energy is the most abundant source of energy and is easily accessible. However, making efficient use of solar energy is not an easy task. Energy materials, especially in their micro and nanoscale, have an excellent potential for absorbing, transferring and storing solar energy when they are dispersed in an aqueous medium. The increased surface area to volume ratio of energy materials at nanoscale exhibits extraordinary characteristics. Various applications relevant to heat transfer, energy conversion, and storage have increasingly used nanoparticles due to their ability to absorb, store, and carry heat. However, successful deployment of materials in energy harvesting and storage applications must also consider some of the very fundamental challenges, including but not limited to sedimentation, entrainment, stability, and life of these potential energy materials. Additionally, there are novel applications of newly developed specialized materials in solar energy capture, transport and storage. This topic is to circumscribe all challenges, innovative applications and numerical studies in materials for energy capture, transfer, and storage to have a safe future in terms of solar energy utilization.
Download or read book Nano Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Download or read book Optical Properties of Solar Absorber Materials and Structures written by Liang-Yao Chen and published by Springer Nature. This book was released on 2021-08-23 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.
Download or read book Recent Advances and Trends in Photonic Crystal Technology written by Ajay Kumar and published by BoD – Books on Demand. This book was released on 2024-03-06 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances and trends in photonic crystal technology, making it a useful resource for students, researchers, and faculty in the field. It consists of five chapters that present in-depth knowledge of numerical methods and different applications of photonic crystal technology. The chapters discuss photonic crystals for energy, sensing, and digital devices. They also examine advanced applications of photonic crystals, like holography and photonic spin hall effect. Each chapter presents a detailed background on the considered application, recent work in the area, possible solutions to challenges, and future aspects.
Download or read book Photovoltaic and Photoactive Materials written by Joseph M. Marshall and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this NATO Advanced Study Institute (ASI) was to present an up-to-date overview of various current areas of interest in the field of photovoltaic and related photoactive materials. This is a wide-ranging subject area, of significant commercial and environmental interest, and involves major contributions from the disciplines of physics, chemistry, materials, electrical and instrumentation engineering, commercial realisation etc. Therefore, we sought to adopt an inter disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development. The lecture programme commenced with overviews of the present relevance and historical development of the subject area, plus an introduction to various underlying physical principles of importance to the materials and devices to be addressed in later lectures. Building upon this, the ASI then progressed to more detailed aspects of the subject area. We were also fortunately able to obtain a contribution from Thierry Langlois d'Estaintot of the European Commission Directorate, describing present and future EC support for activities in this field. In addition, poster sessions were held throughout the meeting, to allow participants to present and discuss their current activities. These were supported by what proved to be very effective feedback sessions (special thanks to Martin Stutzmann), prior to which groups of participants enthusiastically met (often in the bar) to identify and agree topics of common interest.
Download or read book Metalorganic Vapor Phase Epitaxy MOVPE written by Stuart Irvine and published by John Wiley & Sons. This book was released on 2019-10-07 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Download or read book Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines written by Munir H. Nayfeh and published by Elsevier. This book was released on 2018-06-29 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery). Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications. - Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon - Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding - Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers