EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Thermal Methods of Oil Recovery

Download or read book Thermal Methods of Oil Recovery written by Jacques Burger and published by Butterworth-Heinemann. This book was released on 1985 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs

Download or read book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs written by Alireza Bahadori and published by Gulf Professional Publishing. This book was released on 2018-08-18 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference. - Explains enhanced oil recovery methods, focusing specifically on those used for unconventional reservoirs - Includes real-world case studies and examples to further illustrate points - Creates a practical and theoretical foundation with multiple contributors from various backgrounds - Includes a full range of the latest and future methods for enhanced oil recovery, including chemical, waterflooding, CO2 injection and thermal

Book Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands

Download or read book Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands written by James G. Speight and published by Gulf Professional Publishing. This book was released on 2016-02-24 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands, Second Edition, explores the importance of enhanced oil recovery (EOR) and how it has grown in recent years thanks to the increased need to locate unconventional resources such as heavy oil and shale. Unfortunately, petroleum engineers and managers aren't always well-versed in the enhancement methods that are available when needed or the most economically viable solution to maximize their reservoir's productivity. This revised new edition presents all the current methods of recovery available, including the pros and cons of each. Expanded and updated as a great preliminary text for the newcomer to the industry or subject matter, this must-have EOR guide teaches all the basics needed, including all thermal and non-thermal methods, along with discussions of viscosity, sampling, and the technologies surrounding offshore applications. - Enables users to quickly learn how to choose the most efficient recovery method for their reservoir while evaluating economic conditions - Presents the differences between each method of recovery with newly added real-world case studies from around the world - Helps readers stay competitive with the growing need of extracting unconventional resources with new content on how these complex reservoirs interact with injected reservoir fluids

Book Thermal Recovery

Download or read book Thermal Recovery written by Michael Prats and published by . This book was released on 1982 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Recovery of Oil and Bitumen

Download or read book Thermal Recovery of Oil and Bitumen written by Roger M. Butler and published by Englewood Cliffs, N.J. : Prentice Hall. This book was released on 1991 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the recovery of heavy oils and bitumen by in situ thermal methods and discusses the technical factors and problems involved. The book summarizes, in a quantitative manner, techniques used in current petroleum industry practice.

Book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs

Download or read book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs written by Xiaohu Dong and published by Elsevier. This book was released on 2021-10-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs, Volume 73 systematically introduces these technologies. As the development of heavy oil reservoirs is emphasized, the petroleum industry is faced with the challenges of selecting cost-effective and environmentally friendly recovery processes. This book tackles these challenges with the introduction and investigation of a variety of hybrid EOR processes. In addition, it addresses the application of these hybrid EOR processes in onshore and offshore heavy oil reservoirs, including theoretical, experimental and simulation approaches. This book will be very useful for petroleum engineers, technicians, academics and students who need to study the hybrid EOR processes, In addition, it will provide an excellent reference for field operations by the petroleum industry. - Introduces emerging hybrid EOR processes and their technical details - Includes case studies to help readers understand the application potential of hybrid EOR processes from different points-of-view - Features theoretical, experimental and simulation studies to help readers understand the advantages and challenges of each process

Book Thermal Methods of Petroleum Production

Download or read book Thermal Methods of Petroleum Production written by N.K. Baibakov and published by Elsevier. This book was released on 2011-08-18 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, information on Russian enhanced oil recovery (EOR) research work and field experience has not been available in English. This work, originally published in Russian, describes in a systematic manner recent Russian laboratory and field research, as well as industrial experience of applying thermal EOR methods in different Russian oil fields - some with high viscosity crudes and others with low viscosity. It is written by two leading Russian specialists, and contains 116 diagrams (curves, graphs, designs), and 36 tables (research data).The book will be valuable to petroleum companies throughout the world, oil field servicing companies, petroleum engineering consultants, and libraries of technical institutes and universities.

Book Hybrid Enhanced Oil Recovery Using Smart Waterflooding

Download or read book Hybrid Enhanced Oil Recovery Using Smart Waterflooding written by Kun Sang Lee and published by Gulf Professional Publishing. This book was released on 2019-04-03 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Using Smart Waterflooding explains the latest technologies used in the integration of low-salinity and smart waterflooding in other EOR processes to reduce risks attributed to numerous difficulties in existing technologies, also introducing the synergetic effects. Covering both lab and field work and the challenges ahead, the book delivers a cutting-edge product for today's reservoir engineers. - Explains how smart waterflooding is beneficial to each EOR process, such as miscible, chemical and thermal technologies - Discusses the mechanics and modeling involved using geochemistry - Provides extensive tools, such as reservoir simulations through experiments and field tests, establishing a bridge between theory and practice

Book Working Guide to Reservoir Engineering

Download or read book Working Guide to Reservoir Engineering written by William Lyons and published by Gulf Professional Publishing. This book was released on 2009-09-16 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Working Guide to Reservoir Engineering provides an introduction to the fundamental concepts of reservoir engineering. The book begins by discussing basic concepts such as types of reservoir fluids, the properties of fluid containing rocks, and the properties of rocks containing multiple fluids. It then describes formation evaluation methods, including coring and core analysis, drill stem tests, logging, and initial estimation of reserves. The book explains the enhanced oil recovery process, which includes methods such as chemical flooding, gas injection, thermal recovery, technical screening, and laboratory design for enhanced recovery. Also included is a discussion of fluid movement in waterflooded reservoirs. - Predict local variations within the reservoir - Explain past reservoir performance - Predict future reservoir performance of field - Analyze economic optimization of each property - Formulate a plan for the development of the field throughout its life - Convert data from one discipline to another - Extrapolate data from a few discrete points to the entire reservoir

Book Enhanced Oil Recovery in Shale and Tight Reservoirs

Download or read book Enhanced Oil Recovery in Shale and Tight Reservoirs written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2019-11-07 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil Recovery in Shale and Tight Reservoirs delivers a current, state-of-the-art resource for engineers trying to manage unconventional hydrocarbon resources. Going beyond the traditional EOR methods, this book helps readers solve key challenges on the proper methods, technologies and options available. Engineers and researchers will find a systematic list of methods and applications, including gas and water injection, methods to improve liquid recovery, as well as spontaneous and forced imbibition. Rounding out with additional methods, such as air foam drive and energized fluids, this book gives engineers the knowledge they need to tackle the most complex oil and gas assets. - Helps readers understand the methods and mechanisms for enhanced oil recovery technology, specifically for shale and tight oil reservoirs - Includes available EOR methods, along with recent practical case studies that cover topics like fracturing fluid flow back - Teaches additional methods, such as soaking after fracturing, thermal recovery and microbial EOR

Book Thermal Recovery Methods

Download or read book Thermal Recovery Methods written by Philip Davidson White and published by . This book was released on 1983 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Energy

Download or read book Thermal Energy written by Yatish T. Shah and published by CRC Press. This book was released on 2018-01-12 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

Book Polymer Improved Oil Recovery

Download or read book Polymer Improved Oil Recovery written by K.S. Sorbie and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of oil in the world economy cannot be overstated, and methods for recovering oil will be the subject of much scientific and engineering research for many years to come. Even after the application of primary depletion and secondary recovery processes (usually waterflooding), much oil usually remains in a reservoir, and indeed in some heterogeneous reservoir systems as much as 70% of the original oil may remain. Thus, there is an enormous incentive for the development of improved or enhanced methods of oil recovery, aimed at recovering some portion of this remainil)g oil. The techniques used range from 'improved' secondary flooding methods (including polymer and certain gas injection processes) through to 'enhanced' or 'tertiary' methods such as chemical (surfactant, caustic, foam), gas miscible (carbon dioxide, gas reinjection) and thermal (steam soak and drive, in-situ combustion). The distinction between the classification ofthe methods usually refers to the target oil that the process seeks to recover. That is, in 'improved' recovery we are usually aiming to increase the oil sweep efficiency, whereas in 'tertiary' recovery we aim to mobilise and recover residual or capillary trapped oil. There are a few books and collections of articles which give general overviews of improved and enhanced oil recovery methods. However, for each recovery method, there is such a wide range of interconnected issues concerning the chemistry, physics and fluid mechanics of flow in porous media, that rarely are these adequately reviewed.

Book Basic Concepts in Enhanced Oil Recovery Processes

Download or read book Basic Concepts in Enhanced Oil Recovery Processes written by M. Baviere and published by . This book was released on 1991 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Processing of Heavy Crude Oils

Download or read book Processing of Heavy Crude Oils written by Ramasamy Marappa Gounder and published by . This book was released on 2019-12-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids  Nanofluids  Porous Media  and Micropolar Fluids

Download or read book Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids Nanofluids Porous Media and Micropolar Fluids written by John H. Merkin and published by Academic Press. This book was released on 2021-09-09 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids presents new similarity solutions for fluid mechanics problems, including heat transfer of viscous fluids, boundary layer flow, flow in porous media, and nanofluids due to continuous moving surfaces. After discussing several examples of these problems, similarity solutions are derived and solved using the latest proven methods, including bvp4c from MATLAB, the Keller-box method, singularity methods, and more. Numerical solutions and asymptotic results for limiting cases are also discussed in detail to investigate how flow develops at the leading edge and its end behavior. Detailed discussions of mathematical models for boundary layer flow and heat transfer of micro-polar fluid and hybrid nanofluid will help readers from a range of disciplinary backgrounds in their research. Relevant background theory will also be provided, thus helping readers solidify their computational work with a better understanding of physical phenomena. - Provides mathematical models that address important research themes, such as boundary layer flow and heat transfer of micro-polar fluid and hybrid nanofluid - Gives detailed numerical explanations of all solution procedures, including bvp4c from MATLAB, the Keller-box method, and singularity methods - Includes examples of computer code that will save readers time in their own work

Book Efficient Simulation of Thermal Enhanced Oil Recovery Processes

Download or read book Efficient Simulation of Thermal Enhanced Oil Recovery Processes written by Zhouyuan Zhu and published by Stanford University. This book was released on 2011 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating thermal processes is usually computationally expensive because of the complexity of the problem and strong nonlinearities encountered. In this work, we explore novel and efficient simulation techniques to solve thermal enhanced oil recovery problems. We focus on two major topics: the extension of streamline simulation for thermal enhanced oil recovery and the efficient simulation of chemical reaction kinetics as applied to the in-situ combustion process. For thermal streamline simulation, we first study the extension to hot water flood processes, in which we have temperature induced viscosity changes and thermal volume changes. We first compute the pressure field on an Eulerian grid. We then solve for the advective parts of the mass balance and energy equations along the individual streamlines, accounting for the compressibility effects. At the end of each global time step, we account for the nonadvective terms on the Eulerian grid along with gravity using operator splitting. We test our streamline simulator and compare the results with a commercial thermal simulator. Sensitivity studies for compressibility, gravity and thermal conduction effects are presented. We further extended our thermal streamline simulation to steam flooding. Steam flooding exhibits large volume changes and compressibility associated with the phase behavior of steam, strong gravity segregation and override, and highly coupled energy and mass transport. To overcome these challenges we implement a novel pressure update along the streamlines, a Glowinski scheme operator splitting and a preliminary streamline/finite volume hybrid approach. We tested our streamline simulator on a series of test cases. We compared our thermal streamline results with those computed by a commercial thermal simulator for both accuracy and efficiency. For the cases investigated, we are able to retain solution accuracy, while reducing computational cost and gaining connectivity information from the streamlines. These aspects are useful for reservoir engineering purposes. In traditional thermal reactive reservoir simulation, mass and energy balance equations are solved numerically on discretized reservoir grid blocks. The reaction terms are calculated through Arrhenius kinetics using cell-averaged properties, such as averaged temperature and reactant concentrations. For the in-situ combustion process, the chemical reaction front is physically very narrow, typically a few inches thick. To capture accurately this front, centimeter-sized grids are required that are orders of magnitude smaller than the affordable grid block sizes for full field reservoir models. To solve this grid size effect problem, we propose a new method based on a non-Arrhenius reaction upscaling approach. We do not resolve the combustion front on the grid, but instead use a subgrid-scale model that captures the overall effects of the combustion reactions on flow and transport, i.e. the amount of heat released, the amount of oil burned and the reaction products generated. The subgrid-scale model is calibrated using fine-scale highly accurate numerical simulation and laboratory experiments. This approach significantly improves the computational speed of in-situ combustion simulation as compared to traditional methods. We propose the detailed procedures to implement this methodology in a field-scale simulator. Test cases illustrate the solution consistency when scaling up the grid sizes in multidimensional heterogeneous problems. The methodology is also applicable to other subsurface reactive flow modeling problems with fast chemical reactions and sharp fronts. Displacement front stability is a major concern in the design of all the enhanced oil recovery processes. Historically, premature combustion front break through has been an issue for field operations of in-situ combustion. In this work, we perform detailed analysis based on both analytical methods and numerical simulation. We identify the different flow regimes and several driving fronts in a typical 1D ISC process. For the ISC process in a conventional mobile heavy oil reservoir, we identify the most critical front as the front of steam plateau driving the cold oil bank. We discuss the five main contributors for this front stability/instability: viscous force, condensation, heat conduction, coke plugging and gravity. Detailed numerical tests are performed to test and rank the relative importance of all these different effects.