EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscaled Films and Layers

Download or read book Nanoscaled Films and Layers written by Laszlo Nanai and published by BoD – Books on Demand. This book was released on 2017-05-24 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, scientific investigations and technological developments have resulted in many new results. Direct applications of quantum mechanical laws to system with length scales lower than 100 nm (nano) had opened a way to construction of new equipment in the field f.e. of nano- and optoelectronics. This book fits into this trend summarizing the results related to discoveries and technological applications of nanolayer in different fields of material science and even life science. The chapters are organized into three subfields: 1) Preparation and fabrications of nanolayers with different methods. 2) Description of recent achievements related to very important III-V heterostructures. 3) Descriptions of mechanical, thermal, optoelectronic, photocatalytic, and tribological properties of nanolayered structures. Some environmentally friendly applications are also treated in this book. The presented book provides a description of specific and original results obtained by authors. We hope that the volume will be of interest for a wide range of readers working in the field of material science.

Book Nano Microscale Heat Transfer

Download or read book Nano Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Book Light  Plasmonics and Particles

Download or read book Light Plasmonics and Particles written by M. Pinar Menguc and published by Elsevier. This book was released on 2023-05-08 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors. - Reviews the fundamental science, available computational tools, experimental systems, and a wide range of applications of plasmonics - Connects the cross-cutting science of the physics of electromagnetic light scattering by particles, plasmonics and phononic interactions at the electronic, molecular and lattice levels of materials - Reviews applications of light-matter interactions of particles, aerosols, hydrosols and localized plasmonics

Book Proceedings of the 11th International Conference of Ar Tec   Scientific Society of Architectural Engineering

Download or read book Proceedings of the 11th International Conference of Ar Tec Scientific Society of Architectural Engineering written by Rossella Corrao and published by Springer Nature. This book was released on with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Management for Opto electronics Packaging and Applications

Download or read book Thermal Management for Opto electronics Packaging and Applications written by Xiaobing Luo and published by John Wiley & Sons. This book was released on 2024-05-29 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic guide to the theory, applications, and design of thermal management for LED packaging In Thermal Management for Opto-electronics Packaging and Applications, a team of distinguished engineers and researchers deliver an authoritative discussion of the fundamental theory and practical design required for LED product development. Readers will get a solid grounding in thermal management strategies and find up-to-date coverage of heat transfer fundamentals, thermal modeling, and thermal simulation and design. The authors explain cooling technologies and testing techniques that will help the reader evaluate device performance and accelerate the design and manufacturing cycle. In this all-inclusive guide to LED package thermal management, the book provides the latest advances in thermal engineering design and opto-electronic devices and systems. The book also includes: A thorough introduction to thermal conduction and solutions, including discussions of thermal resistance and high thermal conductivity materials Comprehensive explorations of thermal radiation and solutions, including angular- and spectra-regulation radiative cooling Practical discussions of thermally enhanced thermal interfacial materials (TIMs) Complete treatments of hybrid thermal management in downhole devices Perfect for engineers, researchers, and industry professionals in the fields of LED packaging and heat transfer, Thermal Management for Opto-electronics Packaging and Applications will also benefit advanced students focusing on the design of LED product design.

Book Thermal Radiation Heat Transfer

Download or read book Thermal Radiation Heat Transfer written by John R. Howell and published by CRC Press. This book was released on 2020-12-10 with total page 967 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. Features: Offers full treatment of radiative transfer and radiation exchange in enclosures. Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions. Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles. Features expanded coverage of near-field radiative transfer theory and applications. Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer. This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource. Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.

Book Handbook of Thermal Science and Engineering

Download or read book Handbook of Thermal Science and Engineering written by and published by Springer. This book was released on 2018-07-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.

Book Silicon Nanomaterials Sourcebook

Download or read book Silicon Nanomaterials Sourcebook written by Klaus D. Sattler and published by CRC Press. This book was released on 2017-07-28 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Book Nano Microscale Heat Transfer

Download or read book Nano Microscale Heat Transfer written by Zhuomin Zhang and published by McGraw Hill Professional. This book was released on 2007-04-20 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: A THOROUGH EXPLANATION OF THE METHODOLOGIES USED FOR SOLVING HEAT TRANSFER PROBLEMS IN MICRO- AND NANOSYSTEMS. Written by one of the field's pioneers, this highly practical, focused resource integrates the existing body of traditional knowledge with the most recent breakthroughs to offer the reader a solid foundation as well as working technical skills. THE INFORMATION NEEDED TO ACCOUNT FOR THE SIZE EFFECT WHEN DESIGNING AND ANALYZING SYSTEMS AT THE NANOMETER SCALE, WITH COVERAGE OF Statistical Thermodynamics, Quantum Mechanics, Thermal Properties of Molecules, Kinetic Theory, and Micro/Nanofluidics Thermal Transport in Solid Micro/Nanostructures, Electron and Phonon Scattering, Size Effects, Quantum Conductance, Electronic Band Theory, Tunneling, Nonequilibrium Heat Conduction, and Analysis of Solid State Devices Such As Thermoelectric Refrigeration and Optoelectronics Nanoscale Thermal Radiation and Radiative Properties of Nanomaterials, Radiation Temperature and Entropy, Surface Electromagnetic Waves, and Near-Field Radiation for Energy Conversion Devices IN THE NANOWORLD WHERE THE OLD AXIOMS OF THERMAL ANALYSIS MAY NOT APPLY, NANO/MICROSCALE HEAT TRANSFER IS AN ESSENTIAL RESEARCH AND LEARNING SOURCE. Inside: • Statistical Thermodynamics and Kinetic Theory • Thermal Properties of Solids • Thermal Transport in Solids Micro/Nanostructures • Micro/Nanoscale Thermal Radiation • Radiative Properties of Nanomaterials

Book Green s Function Integral Equation Methods in Nano Optics

Download or read book Green s Function Integral Equation Methods in Nano Optics written by Thomas M. Søndergaard and published by CRC Press. This book was released on 2019-01-30 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics

Book Artificial Intelligence for Materials Science

Download or read book Artificial Intelligence for Materials Science written by Yuan Cheng and published by Springer Nature. This book was released on 2021-03-26 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Book Radiation Heat Transfer

Download or read book Radiation Heat Transfer written by Ephraim M. Sparrow and published by Hemisphere Pub. This book was released on 1978 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Green Nanotechnology

    Book Details:
  • Author : Geoffrey B. Smith
  • Publisher : CRC Press
  • Release : 2010-09-29
  • ISBN : 1466502681
  • Pages : 469 pages

Download or read book Green Nanotechnology written by Geoffrey B. Smith and published by CRC Press. This book was released on 2010-09-29 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: A first step in developing a clean and sustainable future is to think differently about everyday products, in particular how they influence energy use. Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment explores the science and technology of tiny structures that have a huge potential to improve quality of life wh

Book Fundamentals of Thermophotovoltaic Energy Conversion

Download or read book Fundamentals of Thermophotovoltaic Energy Conversion written by Donald Chubb and published by Elsevier. This book was released on 2007-05-11 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Each chapter includes a summary and concludes with a set of problems.The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance the emitter efficiency is calculated. Chapter 4 discusses interference, plasma and resonant array filters plus an interference filter with an imbedded metallic layer, a combined interference-plasma filter and spectral control using a back surface reflector(BSR) on the PV array. The theory necessary to calculate the optical properties of these filters is presented. Chapter 5 presents the fundamentals of semiconductor PV cells. Using transport equations calculation of the current-voltage relation for a PV cell is carried out. Quantum efficiency, spectral response and the electrical equivalent circuit for a PV cell are introduced so that the PV cell efficiency and power output can be calculated.The final three chapters of the book consider the combination of the emitter, filter and PV array that make up the optical cavity of a TPV system. Chapter 6 applies radiation transfer theory to calculate the cavity efficiency of planar and cylindrical optical cavities. Also introduced in Chapter 6 are the overall TPV efficiency, thermal efficiency and PV efficiency. Leakage of radiation out of the optical cavity results in a significant loss in TPV efficiency. Chapter 7 considers that topic. The final chapter presents a model for a planar TPV system.Six appendices present background information necessary to carry out theoretical developments in the text. Two of the appendices include Mathematica programs for the spectral optical properties of multi-layer interference filters and a planar TPV system. Software is included for downloading all the programs within the book. - First text written on thermophotovoltaic(TPV) energy conversion - Includes all the necessary theory to calculate TPV system performance - Author has been doing TPV energy conversion research since 1980's - Emphasizes the fundamentals of TPV energy conversion - Includes a summary and problem set at the end of each chapter - Includes Mathematica programs for calculating optical properties of interference filters and planar TPV system performance solution software

Book Advanced Power Generation Systems

Download or read book Advanced Power Generation Systems written by Yatish T. Shah and published by CRC Press. This book was released on 2022-12-21 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Power Generation Systems: Thermal Sources evaluates advances made in heat-to-power technologies for conventional combustion heat and nuclear heat, along with natural sources of geothermal, solar, and waste heat generated from the use of different sources. These advances will render the landscape of power generation significantly different in just a few decades. This book covers the commercial viability of advanced technologies and identifies where more work needs to be done. Since power is the future of energy, these technologies will remain sustainable over a long period of time. Key Features Covers power generation and heat engines Details photovoltaics, thermo-photovoltaics, and thermoelectricity Includes discussion of nuclear and renewable energy as well as waste heat This book will be useful for advanced students, researchers, and professionals interested in power generation and energy industries.

Book Thermal Plasmonics and Metamaterials for a Low Carbon Society

Download or read book Thermal Plasmonics and Metamaterials for a Low Carbon Society written by Kotaro Kajikawa and published by CRC Press. This book was released on 2024-06-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edited volume for researchers and students, experts in thermal plasmonics and metamaterials technologies introduce cutting-edge energy and resource conservation techniques and environmentally friendly solutions in areas including energy generation and harvesting and radiative cooling. Through this book, readers will gain an in-depth understanding of the metamaterials and thermal plasmonics technologies used for such devices and the real-world applications of these technologies. This book is divided into three broad sections to address different aspects of these devices. The first section presents research on materials that can control thermal radiation and optical absorption, phase transition materials, and optical design using AI; the second covers research on thermophovoltaic elements, energy harvesting, and radiative cooling; and the third introduces research on photothermal materials’ applications, such as solar steam generation, desalination, recyclable inks, and radiative textiles. Each chapter is authored by an expert whose research is focused on a specific related technology or application. Readers can apply the information in this book to address many common problems related to environment and energy conservation. This book is invaluable for researchers and graduate students working in the fields of nanophotonics, energy, and environmentally friendly solutions, whether they are working on advancing the underlying technologies or expanding the range of usable applications to solve common global problems related to energy use, cooling, and resource consumption.

Book Nanostructured Nonlinear Optical Materials

Download or read book Nanostructured Nonlinear Optical Materials written by Rashid A. Ganeev and published by Elsevier. This book was released on 2018-06-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Nonlinear Optical Materials: Formation and Fabrication covers the analysis of the formation, characterization and optical nonlinearities of various nanostructures using different methods. It addresses many areas of research in the field, including the modification of the surfaces of materials for the formation of various nanostructures, transmission electron microscopy and time-of-flight mass spectroscopy studies of ablated bulk and nanoparticle targets, the low-order nonlinearities of metal and semiconductor nanoparticles, the nonlinear refraction and nonlinear absorption of carbon-contained nanoparticles, and low- and high-order harmonic generation in nanoparticle-contained plasmas, amongst other topics. The book is an essential reference for all nanomaterials researchers in the fields of photonics, materials, physics, chemistry and nanotechnology. - Present complete coverage of the formation, characterization and optical nonlinearities of nanostructures - Builds on basic theory, showing the strengths of the application of nanostructures in optical materials - Written by a leading expert in the subject