Download or read book The Loss of the Bismarck written by Brian Betham Schofield and published by . This book was released on 1972 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chase and ultimate destruction of the German Battleship Bismarck in May 1941 is one of the epic stories of the naval side of World War II. It is told here in detail for the first time in English, full use having been made of the information now available from both British and German sources.--Dust jacket.
Download or read book Local Gradient Theory for Dielectrics written by Olha Hrytsyna and published by CRC Press. This book was released on 2019-11-22 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the development of the local gradient theory of dielectrics. It presents a brief description of the known approaches to the construction of generalized (integral- and gradient-type) continuous theories of dielectrics. It describes a new continuum–thermodynamic approach to the construction of nonlinear high-order gradient theory of thermoelastic non-ferromagnetic polarized media. This approach is based on accounting for non-diffusive and non-convective mass fluxes associated with the changes in the material microstructure. Within the linear approximation, the theory has been applied to study transition modes of the formation of near-surface inhomogeneity of coupled fields in solids, disjoining pressure in thin films, etc. The theory describes a number of observable phenomena (including the surface, size, flexoelectric, pyroelectric, and thermopolarization effects in centrosymmetric crystals, the Meads anomaly, the high frequency dispersion of elastic waves, etc.) that cannot be explained within the framework of the classical theory of dielectrics.
Download or read book Dielectrics in Electric Fields written by Gorur G. Raju and published by CRC Press. This book was released on 2003-01-22 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the influences of electric fields on dielectric materials and explores their distinctive behavior through well established principles of physics and engineering and recent literature on dielectrics. Facilitates understanding of the space charge phenomena in the nonuniform fields. Contains more than 800 display equations.
Download or read book Dipole Moments in Organic Chemistry written by V. I. Minkin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: In accordance with the aims of the series "Physical Methods in Organic Chemistry," of which this book forms part, the authors r main aim was a systematic account of the most important methods of using the method of dipole moments in organic chemistry and interpreting its results in practice. Since 1955, when two monographs devoted to the fundamentals and applications of the dipole moment method appeared simultaneously (C. P. Smyth, Dielectric Behavior and Structure, McGraw-Hill, New York; and J. W. Smith, Electric Dipole Moments, Butterworths, London), no generalizing studies of this type have appeared in the Russian and foreign literature. Nevertheless, it is just in this per iod that almost half of all publications on the structure and proper ties of organic compounds by means of the dipole moment method have appeared. During this time, the principles of the method of measure mentand the physical theory of the method have not undergone fundamental changes. Consequently, in giving an account of these matters we considered it sufficient to give a very short introduction to the theory of the method that is not burdened with details of the mathematical derivations and the strict formalism of the theory of dielectrics which are hardly used in the applications of the method that are of interest to the organiC chemist (Chapter I).
Download or read book Local Gradient Theory for Dielectrics written by Olha Hrytsyna and published by CRC Press. This book was released on 2019-11-22 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the development of the local gradient theory of dielectrics. It presents a brief description of the known approaches to the construction of generalized (integral- and gradient-type) continuous theories of dielectrics. It describes a new continuum–thermodynamic approach to the construction of nonlinear high-order gradient theory of thermoelastic non-ferromagnetic polarized media. This approach is based on accounting for non-diffusive and non-convective mass fluxes associated with the changes in the material microstructure. Within the linear approximation, the theory has been applied to study transition modes of the formation of near-surface inhomogeneity of coupled fields in solids, disjoining pressure in thin films, etc. The theory describes a number of observable phenomena (including the surface, size, flexoelectric, pyroelectric, and thermopolarization effects in centrosymmetric crystals, the Meads anomaly, the high frequency dispersion of elastic waves, etc.) that cannot be explained within the framework of the classical theory of dielectrics.
Download or read book Principles of Dielectrics written by B. K. P. Scaife and published by OUP Oxford. This book was released on 1998-09-03 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the basic principles of the subject. The macroscopic behaviour of dielectrics receives most attention while an introduction to the microscopic theory is given. The strength of the presentation is its completeness and logical development, and these ensure that the book is a recommended necessity |s Robert Hill, King's College, London.
Download or read book Physics of Dielectrics for the Engineer written by Roland Coelho and published by Elsevier. This book was released on 2012-12-02 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.
Download or read book Electromagnetic Properties of Multiphase Dielectrics written by Tarek I. Zohdi and published by Springer Science & Business Media. This book was released on 2012-04-09 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, several applications, primarily driven by microtechnology, have emerged where the use of materials with tailored electromagnetic (dielectric) properties are necessary for a successful overall design. The ``tailored'' aggregate properties are achieved by combining an easily moldable base matrix with particles having dielectric properties that are chosen to deliver (desired) effective properties. In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response, which can be important to determine possible failures in ``hot spots.'' This necessitates a stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well. A central objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response of such materials by direct simulation using standard laptop/desktop equipment. Accordingly, this monograph covers: (1) The foundations of Maxwell's equations, (2) Basic homogenization theory, (3) Coupled systems (electromagnetic, thermal, mechanical and chemical), (4) Numerical methods and (5) An introduction to select biological problems. The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.
Download or read book Dielectrics in Electric Fields written by Gorur Govinda Raju and published by CRC Press. This book was released on 2017-07-28 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dielectrics in Electric Fields explores the influence of electric fields on dielectric—i.e., non-conducting or insulating—materials, examining the distinctive behaviors of these materials through well-established principles of physics and engineering. Featuring five new chapters, nearly 200 new figures, and more than 800 new citations, this fully updated and significantly expanded Second Edition: Analyzes inorganic substances with real-life applications in harsh working conditions such as outdoor, nuclear, and space environments Introduces methods for measuring dielectric properties at microwave frequencies, presenting results obtained for specific materials Discusses the application of dielectric theory in allied fields such as corrosion studies, civil engineering, and health sciences Combines in one chapter coverage of electrical breakdown in gases with breakdown in micrometric gaps Offers extensive coverage of electron energy distribution—essential knowledge required for the application of plasma sciences in medical science Delivers a detailed review of breakdown in liquids, along with an overview of electron mobility, providing a clear understanding of breakdown phenomena Explains breakdown in solid dielectrics such as single crystals, polycrystalline and amorphous states, thin films, and powders compressed to form pellets Addresses the latest advances in dielectric theory and research, including cutting-edge nanodielectric materials and their practical applications Blends early classical papers that laid the foundation for much of the dielectric theory with more recent work The author has drawn from more than 55 years of research studies and experience in the areas of high-voltage engineering, power systems, and dielectric materials and systems to supply both aspiring and practicing engineers with a comprehensive, authoritative source for up-to-date information on dielectrics in electric fields.
Download or read book Computational Materials Discovery written by Artem Oganov and published by Royal Society of Chemistry. This book was released on 2018-10-30 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and timely book providing an overview of both the methodologies and applications of computational materials design.
Download or read book Theory of Dielectrics written by Herbert Fröhlich and published by Oxford University Press, USA. This book was released on 1958 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of the theory of dielectric properties, this book is accessible to readers with a working knowledge of calculus, statistical mechanics, electrostatics and atomic and molecular physics. An excellent reference for anyone working in applied physics, engineering, or chemistry.
Download or read book Dielectric Phenomena in High Voltage Engineering written by Frank William Peek and published by Watchmaker Publishing. This book was released on 1915 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties of gaseous, liquid and solid insulations, and methods of utilizing these properties to the best advantage in the problems of high-voltage engineering.
Download or read book Dielectric Phenomena in Solids written by Kwan Chi Kao and published by Elsevier. This book was released on 2004-05-11 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: In general, a dielectric is considered as a non-conducting or insulating material (such as a ceramic or polymer used to manufacture a microelectronic device). This book describes the laws governing all dielectric phenomena.·A unified approach is used in describing each of the dielectric phenomena, with the aim of answering "what?", "how?" and "why" for the occurrence of each phenomenon;·Coverage unavailable in other books on ferroelectrics, piezoelectrics, pyroelectrics, electro-optic processes, and electrets;·Theoretical analyses are general and broadly applicable;·Mathematics is simplified and emphasis is placed on the physical insight of the mechanisms responsible for the phenomena;·Truly comprehensive coverage not available in the current literature.
Download or read book Broadband Dielectric Spectroscopy written by Friedrich Kremer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both an introductory course to broadband dielectric spectroscopy and a monograph describing recent dielectric contributions to current topics, this book is the first to cover the topic and has been hotly awaited by the scientific community.
Download or read book Electronic Materials written by Yuriy M. Poplavko and published by Elsevier. This book was released on 2018-11-23 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical and thermal properties are reviewed and electrical and magnetic properties are emphasized. Basics of symmetry and internal structure of crystals and the main properties of metals, dielectrics, semiconductors, and magnetic materials are discussed. The theory and modern experimental data are presented, as well as the specifications of materials that are necessary for practical application in electronics. The modern state of research in nanophysics of metals, magnetic materials, dielectrics and semiconductors is taken into account, with particular attention to the influence of structure on the physical properties of nano-materials. The book uses simplified mathematical treatment of theories, while emphasis is placed on the basic concepts of physical phenomena in electronic materials. Most chapters are devoted to the advanced scientific and technological problems of electronic materials; in addition, some new insights into theoretical facts relevant to technical devices are presented. Electronic Materials is an essential reference for newcomers to the field of electronics, providing a fundamental understanding of important basic and advanced concepts in electronic materials science. Provides important overview of the fundamentals of electronic materials properties significant for device applications along with advanced and applied concepts essential to those working in the field of electronics Takes a simplified and mathematical approach to theories essential to the understanding of electronic materials and summarizes important takeaways at the end of each chapter Interweaves modern experimental data and research in topics such as nanophysics, nanomaterials and dielectrics
Download or read book Dielectric Polymer Materials for High Density Energy Storage written by Zhi-Min Dang and published by William Andrew. This book was released on 2018-06-13 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dielectric Polymer Materials for High-Density Energy Storage begins by introducing the fundamentals and basic theories on the dielectric behavior of material. It then discusses key issues on the design and preparation of dielectric polymer materials with strong energy storage properties, including their characterization, properties and manipulation. The latest methods, techniques and applications are explained in detail regarding this rapidly developing area. The book will support the work of academic researchers and graduate students, as well as engineers and materials scientists working in industrial research and development. In addition, it will be highly valuable to those directly involved in the fabrication of capacitors in industry, and to researchers across the areas of materials science, polymer science, materials chemistry, and nanomaterials. Focuses on how to design and prepare dielectric polymer materials with strong energy storage properties Includes new techniques for adjusting the properties of dielectric polymer materials Presents a thorough review of the state-of-the-art in the field of dielectric polymer materials, providing valuable insights into potential avenues of development
Download or read book Dielectric Metamaterials written by Igal Brener and published by Woodhead Publishing. This book was released on 2019-11-13 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.