EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theory And Mathematical Methods For Bioinformatics  1 e

Download or read book Theory And Mathematical Methods For Bioinformatics 1 e written by Shen and published by . This book was released on 2010-12-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. The book will be useful to students, research scientists and practitioners of bioinformatics and related fields, especially those who are interested in the underlying mathematical methods and theory. Among the methods presented in the book, prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed. In particular, for proteins an in-depth exposition of secondary structure prediction methods should be a valuable tool in both molecular biology and in applications to rational drug design. The book can also be used as a textbook and for this reason most of the chapters include exercises and problems at the level of a graduate program in bioinformatics.

Book Mathematics of Bioinformatics

Download or read book Mathematics of Bioinformatics written by Matthew He and published by John Wiley & Sons. This book was released on 2011-03-16 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.

Book Theory and Mathematical Methods in Bioinformatics

Download or read book Theory and Mathematical Methods in Bioinformatics written by Shiyi Shen and published by Springer Science & Business Media. This book was released on 2008-01-26 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.

Book Introduction to Mathematical Methods in Bioinformatics

Download or read book Introduction to Mathematical Methods in Bioinformatics written by Alexander Isaev and published by Springer. This book was released on 2006-10-04 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.

Book Pattern Discovery in Bioinformatics

Download or read book Pattern Discovery in Bioinformatics written by Laxmi Parida and published by CRC Press. This book was released on 2007-07-04 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computational methods of bioinformatics are being used more and more to process the large volume of current biological data. Promoting an understanding of the underlying biology that produces this data, Pattern Discovery in Bioinformatics: Theory and Algorithms provides the tools to study regularities in biological data. Taking a systema

Book Statistical Methods in Bioinformatics

Download or read book Statistical Methods in Bioinformatics written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2005-09-30 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)

Book Algebraic and Discrete Mathematical Methods for Modern Biology

Download or read book Algebraic and Discrete Mathematical Methods for Modern Biology written by Raina Robeva and published by Academic Press. This book was released on 2015-05-09 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. Examines significant questions in modern biology and their mathematical treatments Presents important mathematical concepts and tools in the context of essential biology Features material of interest to students in both mathematics and biology Presents chapters in modular format so coverage need not follow the Table of Contents Introduces projects appropriate for undergraduate research Utilizes freely accessible software for visualization, simulation, and analysis in modern biology Requires no calculus as a prerequisite Provides a complete Solutions Manual Features a companion website with supplementary resources

Book Mathematical Principles in Bioinformatics

Download or read book Mathematical Principles in Bioinformatics written by Stephen S.-T. Yau and published by Springer Nature. This book was released on 2024-01-11 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces bioinformatics to students in mathematics with no biology background assumed and it provides solid mathematical tools for biology students along with an understanding of how to implement them in bioinformatics problems. In addition to the basics, the text offers new approaches to understanding biological sequences. The concise presentation distinguishes itself from others on the subject, discussing and providing principles that relate to current open problems in bioinformatics as well as considering a variety of models. The convex hull principle is highlighted, opening a new interdisciplinary research area at the intersection of biology, mathematics, and computer science. Prerequisites include first courses in linear algebra, probability and statistics, and mathematical analysis. Researchers in mathematics, biology, and math-biology, will also find aspects of this text useful. This textbook is written based on the authors' research works that have been published in various journals along with the lecture notes used when teaching bioinformatics courses at the University of Illinois at Chicago and at Tsinghua University. The content may be divided into two parts. The first part includes three chapters, introducing some basic concepts. Chapter 1 provides biological background in molecular biology for mathematicians. Chapter 2 describes biological databases that are commonly used. Chapter 3 is concerned with alignment methods including global/local alignment, heuristic alignment, and multiple alignment. The second part consisting of five chapters, describes several bioinformatics principles using a rigorous mathematical formulation. Chapter 4 introduces the time-frequency spectral principle and its applications in bioinformatics. In Chapters 5 and 6, two strategies are used, the graphical representation and the natural vector method, to represent biological sequences, and conduct sequence comparison and phylogenetic analysis without alignment. Chapter 7 presents the convex hull principle and shows how it can be used to mathematically determine whether a certain amino acid sequence can be a protein. The last chapter summarizes additional mathematical ideas relating to sequence comparisons, such as new feature vectors and metrics. This part focuses on the governing principle in biology and provides plenty of alignment-free methods, which cannot be found in any other book.

Book Bioinformatics and Systems Biology

Download or read book Bioinformatics and Systems Biology written by Frederick Marcus and published by Springer Science & Business Media. This book was released on 2008-07-22 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collaborative research in bioinformatics and systems biology is a key element of modern biology and health research. This book highlights and provides access to many of the methods, environments, results and resources involved, including integral laboratory data generation and experimentation and clinical activities. Collaborative projects embody a research paradigm that connects many of the top scientists, institutions, their resources and research worldwide, resulting in first-class contributions to bioinformatics and systems biology. Central themes include describing processes and results in collaborative research projects using computational biology and providing a guide for researchers to access them. The book is also a practical guide on how science is managed. It shows how collaborative researchers are putting results together in a way accessible to the entire biomedical community.

Book Branching Processes in Biology

Download or read book Branching Processes in Biology written by Marek Kimmel and published by Springer. This book was released on 2015-02-17 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second expanded edition adds new material published during the last decade, with nearly 200 new references. More material has been added on infinitely-dimensional multitype processes, including the infinitely-dimensional linear-fractional case. Hypergeometric function treatment of the special case of the Griffiths-Pakes infinite allele branching process has also been added. There are additional applications of recent molecular processes and connections with systems biology are explored, and a new chapter on genealogies of branching processes and their applications. Reviews of First Edition: "This is a significant book on applications of branching processes in biology, and it is highly recommended for those readers who are interested in the application and development of stochastic models, particularly those with interests in cellular and molecular biology." (Siam Review, Vol. 45 (2), 2003) “This book will be very interesting and useful for mathematicians, statisticians and biologists as well, and especially for researchers developing mathematical methods in biology, medicine and other natural sciences.” (Short Book Reviews of the ISI, Vol. 23 (2), 2003)

Book Statistical Methods in Bioinformatics

Download or read book Statistical Methods in Bioinformatics written by Warren J. Ewens and published by Springer. This book was released on 2008-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)

Book Advanced Topics in Scattering Theory and Biomedical Engineering

Download or read book Advanced Topics in Scattering Theory and Biomedical Engineering written by A. Charalambopoulos and published by World Scientific. This book was released on 2010 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of proceedings consists of the papers presented during the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, held in Patras, Greece, on 9ndash;11 October 2009. The book contains papers on scattering theory and biomedical engineering - two rapidly evolving fields which have a considerable impact on today's research. All the papers are state-of-the-art, have been carefully reviewed before publication and the authors are well-known in the scientific community. in addition, some papers focus more on applied mathematics, which provides a solid ground for development and innovative research in scattering and biomedical engineering.

Book Mathematical Methods in Artificial Intelligence

Download or read book Mathematical Methods in Artificial Intelligence written by Edward A. Bender and published by Wiley-IEEE Computer Society Press. This book was released on 1996-02-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Book Introduction to Bioinformatics

Download or read book Introduction to Bioinformatics written by Stephen A. Krawetz and published by Springer Science & Business Media. This book was released on 2003-01-31 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM contains: chapter illustrations -- full and trial versions of programs.

Book Advances in Artificial Systems for Medicine and Education III

Download or read book Advances in Artificial Systems for Medicine and Education III written by Zhengbing Hu and published by Springer Nature. This book was released on 2020-01-14 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the latest advances in the development of artificial intelligence systems and their applications in various fields, from medicine and technology to education. It comprises papers presented at the Third International Conference of Artificial Intelligence, Medical Engineering, Education (AIMEE2019), held at the Mechanical Engineering Institute of the Russian Academy of Sciences, Moscow, Russia, on 1–3 October 2019. Covering topics such as mathematics and biomathematics; medical approaches; and technological and educational approaches, it is intended for the growing number of specialists and students in this field, as well as other readers interested in discovering where artificial intelligence systems can be applied in the future.

Book Mathematical Modeling of Biological Systems  Volume II

Download or read book Mathematical Modeling of Biological Systems Volume II written by Andreas Deutsch and published by Birkhäuser. This book was released on 2007-11-07 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Book Understanding and Using Linear Programming

Download or read book Understanding and Using Linear Programming written by Jiri Matousek and published by Springer Science & Business Media. This book was released on 2007-07-04 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".