Download or read book Elements of Point Set Topology written by John D. Baum and published by Courier Corporation. This book was released on 1991-01-01 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.
Download or read book Point Set Topology written by Steven A. Gaal and published by Courier Corporation. This book was released on 2009-04-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for a complete course in topology, this text also functions as a self-contained treatment for independent study. Additional enrichment materials make it equally valuable as a reference. 1964 edition.
Download or read book Topology written by Tai-Danae Bradley and published by MIT Press. This book was released on 2020-08-18 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.
Download or read book A Course in Point Set Topology written by John B. Conway and published by Springer Science & Business Media. This book was released on 2013-11-04 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.
Download or read book Topology and Groupoids written by Ronald Brown and published by Booksurge Llc. This book was released on 2006 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. The book is intended as a text for a two-semester course in topology and algebraic topology at the advanced undergraduate orbeginning graduate level. There are over 500 exercises, 114 figures, numerous diagrams. The general direction of the book is towardhomotopy theory with a geometric point of view. This book would providea more than adequate background for a standard algebraic topology coursethat begins with homology theory. For more information seewww.bangor.ac.uk/r.brown/topgpds.htmlThis version dated April 19, 2006, has a number of corrections made.
Download or read book Topology written by Paul L. Shick and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics—connected and path-connected spaces, compact spaces, separation axioms, and metric spaces—Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate context Sections with exercise sets ranging in difficulty from easy to fairly challenging Exercises that are very creative in their approaches and work well in a classroom setting A supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs
Download or read book Counterexamples in Topology written by Lynn Arthur Steen and published by Courier Corporation. This book was released on 2013-04-22 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
Download or read book A Combinatorial Introduction to Topology written by Michael Henle and published by Courier Corporation. This book was released on 1994-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Download or read book Introduction to Topology written by Colin Conrad Adams and published by Pearson. This book was released on 2008 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the basics of point-set topology with the understanding of its real-world application to a variety of other subjects including science, economics, engineering, and other areas of mathematics. Introduces topology as an important and fascinating mathematics discipline to retain the readers interest in the subject. Is written in an accessible way for readers to understand the usefulness and importance of the application of topology to other fields. Introduces topology concepts combined with their real-world application to subjects such DNA, heart stimulation, population modeling, cosmology, and computer graphics. Covers topics including knot theory, degree theory, dynamical systems and chaos, graph theory, metric spaces, connectedness, and compactness. A useful reference for readers wanting an intuitive introduction to topology.
Download or read book Theory and Examples of Point set Topology written by John Jay Greever and published by . This book was released on 1967 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Non Hausdorff Topology and Domain Theory written by Jean Goubault-Larrecq and published by Cambridge University Press. This book was released on 2013-03-28 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book on modern topology looks well beyond traditional treatises and explores spaces that may, but need not, be Hausdorff. This is essential for domain theory, the cornerstone of semantics of computer languages, where the Scott topology is almost never Hausdorff. For the first time in a single volume, this book covers basic material on metric and topological spaces, advanced material on complete partial orders, Stone duality, stable compactness, quasi-metric spaces and much more. An early chapter on metric spaces serves as an invitation to the topic (continuity, limits, compactness, completeness) and forms a complete introductory course by itself. Graduate students and researchers alike will enjoy exploring this treasure trove of results. Full proofs are given, as well as motivating ideas, clear explanations, illuminating examples, application exercises and some more challenging problems for more advanced readers.
Download or read book Introduction to Topological Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
Download or read book Topology Through Inquiry written by Michael Starbird and published by American Mathematical Soc.. This book was released on 2020-09-10 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.
Download or read book Elementary Topology written by O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov and published by American Mathematical Soc.. This book was released on with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Download or read book Topology Via Logic written by Steven Vickers and published by Cambridge University Press. This book was released on 1989 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, Topology via Logic is an advanced textbook on topology for computer scientists. Based on a course given by the author to postgraduate students of computer science at Imperial College, it has three unusual features. First, the introduction is from the locale viewpoint, motivated by the logic of finite observations: this provides a more direct approach than the traditional one based on abstracting properties of open sets in the real line. Second, the methods of locale theory are freely exploited. Third, there is substantial discussion of some computer science applications. Although books on topology aimed at mathematics exist, no book has been written specifically for computer scientists. As computer scientists become more aware of the mathematical foundations of their discipline, it is appropriate that such topics are presented in a form of direct relevance and applicability. This book goes some way towards bridging the gap.
Download or read book Frames and Locales written by Jorge Picado and published by Springer Science & Business Media. This book was released on 2011-10-21 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.
Download or read book Analysis in Euclidean Space written by Kenneth Hoffman and published by Courier Dover Publications. This book was released on 2019-07-17 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory. Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings addresses implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a Bibliography, List of Symbols, Index, and an Appendix with background in elementary set theory.