EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Long Memory Processes

    Book Details:
  • Author : Jan Beran
  • Publisher : Springer Science & Business Media
  • Release : 2013-05-14
  • ISBN : 3642355129
  • Pages : 892 pages

Download or read book Long Memory Processes written by Jan Beran and published by Springer Science & Business Media. This book was released on 2013-05-14 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.

Book Statistics for Long Memory Processes

Download or read book Statistics for Long Memory Processes written by Jan Beran and published by CRC Press. This book was released on 1994-10-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence.

Book Palgrave Handbook of Econometrics

Download or read book Palgrave Handbook of Econometrics written by Terence C. Mills and published by Springer. This book was released on 2009-06-25 with total page 1406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following theseminal Palgrave Handbook of Econometrics: Volume I , this second volume brings together the finestacademicsworking in econometrics today andexploresapplied econometrics, containing contributions onsubjects includinggrowth/development econometrics and applied econometrics and computing.

Book Theory and Applications of Long Range Dependence

Download or read book Theory and Applications of Long Range Dependence written by Paul Doukhan and published by Springer Science & Business Media. This book was released on 2002-12-13 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of data analysis has been greatly affected by our computer age. For example, the issue of collecting and storing huge data sets has become quite simplified and has greatly affected such areas as finance and telecommunications. Even non-specialists try to analyze data sets and ask basic questions about their structure. One such question is whether one observes some type of invariance with respect to scale, a question that is closely related to the existence of long-range dependence in the data. This important topic of long-range dependence is the focus of this unique work, written by a number of specialists on the subject. The topics selected should give a good overview from the probabilistic and statistical perspective. Included will be articles on fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, and prediction for long-range dependence sequences. For those graduate students and researchers who want to use the methodology and need to know the "tricks of the trade," there will be a special section called "Mathematical Techniques." Topics in the first part of the book are covered from probabilistic and statistical perspectives and include fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, prediction for long-range dependence sequences. The reader is referred to more detailed proofs if already found in the literature. The last part of the book is devoted to applications in the areas of simulation, estimation and wavelet techniques, traffic in computer networks, econometry and finance, multifractal models, and hydrology. Diagrams and illustrations enhance the presentation. Each article begins with introductory background material and is accessible to mathematicians, a variety of practitioners, and graduate students. The work serves as a state-of-the art reference or graduate seminar text.

Book Processes with Long Range Correlations

Download or read book Processes with Long Range Correlations written by Govindan Rangarajan and published by Springer Science & Business Media. This book was released on 2003-06-11 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processes with long range correlations occur in a wide variety of fields ranging from physics and biology to economics and finance. This book, suitable for both graduate students and specialists, brings the reader up to date on this rapidly developing field. A distinguished group of experts have been brought together to provide a comprehensive and well-balanced account of basic notions and recent developments. The book is divided into two parts. The first part deals with theoretical developments in the area. The second part comprises chapters dealing primarily with three major areas of application: anomalous diffusion, economics and finance, and biology (especially neuroscience).

Book Long Memory in Economics

Download or read book Long Memory in Economics written by Gilles Teyssière and published by Springer Science & Business Media. This book was released on 2006-09-22 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.

Book Long Memory Time Series

Download or read book Long Memory Time Series written by Wilfredo Palma and published by John Wiley & Sons. This book was released on 2007-04-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, contemporary treatment of the analysis of long-range dependent data Long-Memory Time Series: Theory and Methods provides an overview of the theory and methods developed to deal with long-range dependent data and describes the applications of these methodologies to real-life time series. Systematically organized, it begins with the foundational essentials, proceeds to the analysis of methodological aspects (Estimation Methods, Asymptotic Theory, Heteroskedastic Models, Transformations, Bayesian Methods, and Prediction), and then extends these techniques to more complex data structures. To facilitate understanding, the book: Assumes a basic knowledge of calculus and linear algebra and explains the more advanced statistical and mathematical concepts Features numerous examples that accelerate understanding and illustrate various consequences of the theoretical results Proves all theoretical results (theorems, lemmas, corollaries, etc.) or refers readers to resources with further demonstration Includes detailed analyses of computational aspects related to the implementation of the methodologies described, including algorithm efficiency, arithmetic complexity, CPU times, and more Includes proposed problems at the end of each chapter to help readers solidify their understanding and practice their skills A valuable real-world reference for researchers and practitioners in time series analysis, economerics, finance, and related fields, this book is also excellent for a beginning graduate-level course in long-memory processes or as a supplemental textbook for those studying advanced statistics, mathematics, economics, finance, engineering, or physics. A companion Web site is available for readers to access the S-Plus and R data sets used within the text.

Book Time Series Analysis with Long Memory in View

Download or read book Time Series Analysis with Long Memory in View written by Uwe Hassler and published by John Wiley & Sons. This book was released on 2018-09-07 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a simple exposition of the basic time series material, and insights into underlying technical aspects and methods of proof Long memory time series are characterized by a strong dependence between distant events. This book introduces readers to the theory and foundations of univariate time series analysis with a focus on long memory and fractional integration, which are embedded into the general framework. It presents the general theory of time series, including some issues that are not treated in other books on time series, such as ergodicity, persistence versus memory, asymptotic properties of the periodogram, and Whittle estimation. Further chapters address the general functional central limit theory, parametric and semiparametric estimation of the long memory parameter, and locally optimal tests. Intuitive and easy to read, Time Series Analysis with Long Memory in View offers chapters that cover: Stationary Processes; Moving Averages and Linear Processes; Frequency Domain Analysis; Differencing and Integration; Fractionally Integrated Processes; Sample Means; Parametric Estimators; Semiparametric Estimators; and Testing. It also discusses further topics. This book: Offers beginning-of-chapter examples as well as end-of-chapter technical arguments and proofs Contains many new results on long memory processes which have not appeared in previous and existing textbooks Takes a basic mathematics (Calculus) approach to the topic of time series analysis with long memory Contains 25 illustrative figures as well as lists of notations and acronyms Time Series Analysis with Long Memory in View is an ideal text for first year PhD students, researchers, and practitioners in statistics, econometrics, and any application area that uses time series over a long period. It would also benefit researchers, undergraduates, and practitioners in those areas who require a rigorous introduction to time series analysis.

Book Statistics for Long Memory Processes

Download or read book Statistics for Long Memory Processes written by Jan Beran and published by Routledge. This book was released on 2017-11-22 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence.

Book Innovations in Quantitative Risk Management

Download or read book Innovations in Quantitative Risk Management written by Kathrin Glau and published by Springer. This book was released on 2015-01-09 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative models are omnipresent –but often controversially discussed– in todays risk management practice. New regulations, innovative financial products, and advances in valuation techniques provide a continuous flow of challenging problems for financial engineers and risk managers alike. Designing a sound stochastic model requires finding a careful balance between parsimonious model assumptions, mathematical viability, and interpretability of the output. Moreover, data requirements and the end-user training are to be considered as well. The KPMG Center of Excellence in Risk Management conference Risk Management Reloaded and this proceedings volume contribute to bridging the gap between academia –providing methodological advances– and practice –having a firm understanding of the economic conditions in which a given model is used. Discussed fields of application range from asset management, credit risk, and energy to risk management issues in insurance. Methodologically, dependence modeling, multiple-curve interest rate-models, and model risk are addressed. Finally, regulatory developments and possible limits of mathematical modeling are discussed.

Book Time Series with Long Memory

Download or read book Time Series with Long Memory written by Peter M. Robinson and published by Advanced Texts in Econometrics. This book was released on 2003 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long memory time series are characterized by a strong dependence between distant events.

Book Time Series Analysis Univariate and Multivariate Methods

Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.

Book Linear Processes in Function Spaces

Download or read book Linear Processes in Function Spaces written by Denis Bosq and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. Mathematical tools are presented, as well as autoregressive processes in Hilbert and Banach spaces and general linear processes and statistical prediction. Implementation and numerical applications are also covered. The book assumes knowledge of classical probability theory and statistics.

Book Empirical Process Techniques for Dependent Data

Download or read book Empirical Process Techniques for Dependent Data written by Herold Dehling and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empirical process techniques for independent data have been used for many years in statistics and probability theory. These techniques have proved very useful for studying asymptotic properties of parametric as well as non-parametric statistical procedures. Recently, the need to model the dependence structure in data sets from many different subject areas such as finance, insurance, and telecommunications has led to new developments concerning the empirical distribution function and the empirical process for dependent, mostly stationary sequences. This work gives an introduction to this new theory of empirical process techniques, which has so far been scattered in the statistical and probabilistic literature, and surveys the most recent developments in various related fields. Key features: A thorough and comprehensive introduction to the existing theory of empirical process techniques for dependent data * Accessible surveys by leading experts of the most recent developments in various related fields * Examines empirical process techniques for dependent data, useful for studying parametric and non-parametric statistical procedures * Comprehensive bibliographies * An overview of applications in various fields related to empirical processes: e.g., spectral analysis of time-series, the bootstrap for stationary sequences, extreme value theory, and the empirical process for mixing dependent observations, including the case of strong dependence. To date this book is the only comprehensive treatment of the topic in book literature. It is an ideal introductory text that will serve as a reference or resource for classroom use in the areas of statistics, time-series analysis, extreme value theory, point process theory, and applied probability theory. Contributors: P. Ango Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,

Book Long Range Dependence and Self Similarity

Download or read book Long Range Dependence and Self Similarity written by Vladas Pipiras and published by Cambridge University Press. This book was released on 2017-04-18 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.

Book Hidden Markov Models for Time Series

Download or read book Hidden Markov Models for Time Series written by Walter Zucchini and published by CRC Press. This book was released on 2017-12-19 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data

Book Stochastic Calculus for Fractional Brownian Motion and Related Processes

Download or read book Stochastic Calculus for Fractional Brownian Motion and Related Processes written by Yuliya Mishura and published by Springer Science & Business Media. This book was released on 2008-01-02 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume examines the theory of fractional Brownian motion and other long-memory processes. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. It proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional market.