Download or read book Optical Properties of Nanoparticle Systems written by Michael Quinten and published by John Wiley & Sons. This book was released on 2010-11-29 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the gap for a description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter, this is the most up-to-date reference on the optical physics of nanoparticle systems. The author, an expert in the field with both academic and industrial experience, concentrates on the linear optical properties, elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter.
Download or read book Thermal Radiation Heat Transfer 5th Edition written by John R. Howell and published by CRC Press. This book was released on 2010-09-28 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces—and where heat conduction is included within the boundaries. The book also covers the radiative properties of gases and addresses energy exchange when gases and other materials interact with radiative energy, as occurs in furnaces. To make this challenging subject matter easily understandable for students, the authors have revised and reorganized this textbook to produce a streamlined, practical learning tool that: Applies the common nomenclature adopted by the major heat transfer journals Consolidates past material, reincorporating much of the previous text into appendices Provides an updated, expanded, and alphabetized collection of references, assembling them in one appendix Offers a helpful list of symbols With worked-out examples, chapter-end homework problems, and other useful learning features, such as concluding remarks and historical notes, this new edition continues its tradition of serving both as a comprehensive textbook for those studying and applying radiative transfer, and as a repository of vital literary references for the serious researcher.
Download or read book Radiative Heat Transfer written by Michael F. Modest and published by Academic Press. This book was released on 2003-03-07 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic physics of radiative heat - how surfaces emit, reflect, and absorb waves, and how that heat is distributed.
Download or read book Thermal Radiation Heat Transfer written by John R. Howell and published by CRC Press. This book was released on 2020-12-09 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. Features: Offers full treatment of radiative transfer and radiation exchange in enclosures. Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions. Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles. Features expanded coverage of near-field radiative transfer theory and applications. Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer. This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource. Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.
Download or read book Journal of the Optical Society of America written by and published by . This book was released on 1994 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Scattering Absorption and Emission of Light by Small Particles written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2002-06-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and up-to-date treatment of electromagnetic scattering by small particles.
Download or read book New and Future Developments in Microbial Biotechnology and Bioengineering written by Vijai Kumar Gupta and published by Elsevier. This book was released on 2016-10-27 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications provides information on emerging issues related to recent advancements in aspergillus research and its applications in bioprocess technology, chemical engineering, genome biology, molecular taxonomy, secondary and metabolite production, industrial process and biofuels/bioenergy research, and alternative fuel development. The book covers the various novel enzymes secreted by these fungi and their specific use in the food, textile, pulp and paper, biocellulosic ethanol production, and other industries. The book describes research and experimentation on aspergillus activity and directly connects them to their use in bioprocess technology, chemical engineering, bioremediation process, secondary metabolite production, pharmaceutical processes, protein production, industrial process, biofuels/bioenergy research, and alternative fuel development. Readers will find this book to be an indispensable resource for biotechnologists, biochemical engineers, biochemists, microbiologists, bioinformatics researchers, and other biologists who are interested in learning about the potential applications of these fungi. - Compiles available, up-to-date information on recent developments made in the study of aspergillus system properties - Contains global content from pioneering international authors - Presents current research efforts and links them to various applications, including uses in foods, textiles, pulp and paper, and in biocellulosic ethanol production - Provides an indispensable resource for biologists who are interested in learning about the potential applications of the fungi aspergillus
Download or read book Light Scattering Reviews 4 written by Alexander A. Kokhanovsky and published by Springer Science & Business Media. This book was released on 2009-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth volume of Light Scattering Reviews is composed of three parts. The ?rstpartisconcernedwiththeoreticalandexperimentalstudiesofsinglelightsc- tering by small nonspherical particles. Light scattering by small particles such as, for instance, droplets in the terrestrial clouds is a well understood area of physical optics. On the other hand, exact theoretical calculations of light scattering p- terns for most of nonspherical and irregularly shaped particles can be performed only for the restricted values of the size parameter, which is proportional to the ratio of the characteristic size of the particle to the wavelength?. For the large nonspherical particles, approximations are used (e. g. , ray optics). The exact th- retical techniques such as the T-matrix method cannot be used for extremely large particles, such as those in ice clouds, because then the size parameter in the v- iblex=2?a/???,wherea is the characteristic size (radius for spheres), and the associated numerical codes become unstable and produce wrong answers. Yet another problem is due to the fact that particles in many turbid media (e. g. , dust clouds) cannot be characterized by a single shape. Often, refractive indices also vary. Because of problems with theoretical calculations, experimental (i. e. , la- ratory) investigations are important for the characterization and understanding of the optical properties of such types of particles. The ?rst paper in this volume, written by B. Gustafson, is aimed at the descr- tionofscaledanalogueexperimentsinelectromagneticscattering.
Download or read book Multiple Scattering of Light by Particles written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2006-04-27 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.
Download or read book Light Scattering Reviews 10 written by Alexander A. Kokhanovsky and published by Springer. This book was released on 2015-07-13 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work is aimed at the review of hot topics in modern light scattering and radiative transfer. A special attention will be given to the description of the methods of integro-differential radiative transfer equation solution. In particular, the asymptotic radiative transfer and the method of discrete ordinates will be considered. A comprehensive review of light absorption in the terrestrial atmosphere will be given as well. The inverse problem solution will be reviewed as well.
Download or read book Radiative Transfer I written by M. Pinar Mengüç and published by Begell House Publishers. This book was released on 1996 with total page 1576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the First International Symposium on Radiative Heat Transfer Includes more than 50 papers on solution methods for the radiative transfer equation, transient radiation problems, radiative properties of gases, inverse radiation problems, modeling of comprehensive systems and more.
Download or read book Light Scattering by Particles in Water written by Miroslaw Jonasz and published by Elsevier. This book was released on 2011-08-29 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data on light scattering by particles in water, the authors employ simple models. The book concludes with extensive critical reviews of the experimental constraints of light scattering models: results of measurements of light scattering and of the key properties of the particles: size distribution, refractive index (composition), structure, and shape. These reviews guide the reader through literature scattered among more than 210 scientific journals and periodicals which represent a wide range of disciplines. A special emphasis is put on the methods of measuring both light scattering and the relevant properties of the particles, because principles of these methods may affect interpretation and applicability of the results. The book includes extensive guides to literature on light scattering data and instrumentation design, as well as on the data for size distributions, refractive indices, and shapes typical of particles in natural waters. It also features a comprehensive index, numerous cross-references, and a reference list with over 1370 entries. An errata sheet for this work can be found at: http://www.tpdsci.com/Ref/Jonasz_M_2007_LightScatE.php *Extensive reference section provides handy compilations of knowledge on the designs of light scattering meters, sources of experimental data, and more *Worked exercises and examples throughout
Download or read book NASA Technical Note written by and published by . This book was released on 1968 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Scattering of Electromagnetic Waves written by Leung Tsang and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the first volume, Theories and Applications, Leung Tsang (University of Washington) Jin Au Kong (MIT), and Kung-Hau Ding (Air Force Research Lab) cover: * Basic theory of electromagnetic scattering * Fundamentals of random scattering * Characteristics of discrete scatterers and rough surfaces * Scattering and emission by layered media * Single scattering and applications * Radiative transfer theory and solution techniques * One-dimensional random rough surface scattering
Download or read book The Mie Theory written by Wolfram Hergert and published by Springer. This book was released on 2012-06-30 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in a concise way the Mie theory and its current applications. It begins with an overview of current theories, computational methods, experimental techniques, and applications of optics of small particles. There is also some biographic information on Gustav Mie, who published his famous paper on the colour of Gold colloids in 1908. The Mie solution for the light scattering of small spherical particles set the basis for more advanced scattering theories and today there are many methods to calculate light scattering and absorption for practically any shape and composition of particles. The optics of small particles is of interest in industrial, atmospheric, astronomic and other research. The book covers the latest developments in divers fields in scattering theory such as plasmon resonance, multiple scattering and optical force.
Download or read book Handbook of Surface and Colloid Chemistry written by K. S. Birdi and published by CRC Press. This book was released on 1997-10-22 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: European, North American, Canadian, and South Asian scientists have joined forces to create the only handbook in existence on the chemistry of surface and colloidal systems. Never before has the massive amount of data required by surface research chemists been available in a single volume. With this new handbook, searching through journals for a piece of data becomes obsolete. All the facts and figures you need in the laboratory or in the classroom are at your finger-tips. The data is presented in a unique style and format, providing a guide for future research planning.
Download or read book Photothermal Investigations of Solids and Fluids written by J Sell and published by Elsevier. This book was released on 2012-12-02 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photothermal Investigations of Solids and Fluids discusses photothermal optical diagnostic techniques in the study of solids and fluids, which involve areas of photothermal spectroscopy, imaging, and velocimetry. This book explores the development of lasers as powerful and convenient sources of localized energy. Organized into 10 chapters, this monograph begins with an overview of photothermal spectroscopy as the field in which the nature of matter is probed using optical excitation of a medium and optical probing of the thermal energy that results from this excitation. This book then provides the reader with a link between the physics applicable to the photothermal experiments and the methodology involved in such investigation. Other chapters examine the experimental photothermal detectors that are constructed for use in most forms of chromatography and electrophoresis. The final chapter deals with several promising spectroscopies, including photothermal interferometry, photothermal modulation of Mie scattering, and photophoretic spectroscopy. Graduate students, professors, and research scientists will find this monograph extremely useful.