EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electronic Structure of Strongly Correlated Materials

Download or read book Electronic Structure of Strongly Correlated Materials written by Vladimir Anisimov and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

Book Strongly Correlated Systems

    Book Details:
  • Author : Adolfo Avella
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-05
  • ISBN : 3642351069
  • Pages : 350 pages

Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

Book Theoretical Methods for Strongly Correlated Electrons

Download or read book Theoretical Methods for Strongly Correlated Electrons written by David Sénéchal and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.

Book Theoretical Study of Strongly Correlated Materials

Download or read book Theoretical Study of Strongly Correlated Materials written by Quan Yin and published by . This book was released on 2009-07 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamical Mean Field Theory for Strongly Correlated Materials

Download or read book Dynamical Mean Field Theory for Strongly Correlated Materials written by Volodymyr Turkowski and published by Springer Nature. This book was released on 2021-04-22 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.

Book Strongly Correlated Systems

    Book Details:
  • Author : Adolfo Avella
  • Publisher : Springer Science & Business Media
  • Release : 2011-11-01
  • ISBN : 3642218318
  • Pages : 487 pages

Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2011-11-01 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

Book Quantum Field Theory in Strongly Correlated Electronic Systems

Download or read book Quantum Field Theory in Strongly Correlated Electronic Systems written by Naoto Nagaosa and published by Springer Science & Business Media. This book was released on 1999-09-20 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.

Book Strongly Correlated Fermions and Bosons in Low Dimensional Disordered Systems

Download or read book Strongly Correlated Fermions and Bosons in Low Dimensional Disordered Systems written by Igor V. Lerner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.

Book Strongly Correlated Electrons in Two Dimensions

Download or read book Strongly Correlated Electrons in Two Dimensions written by Sergey Kravchenko and published by CRC Press. This book was released on 2017-05-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.

Book Emergent Phenomena in Correlated Matter

Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hubbard Operators in the Theory of Strongly Correlated Electrons

Download or read book Hubbard Operators in the Theory of Strongly Correlated Electrons written by S. G. Ovchinnikov and published by Imperial College Press. This book was released on 2004 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first systematic discourse on a very peculiarapproach to the theory of strongly correlated systems. HubbardX-operators have been known for a long time but have not been widelyused because of their awkward algebra. The book shows that it ispossible to deal with X-operators even in the general multilevel localeigenstate system, and not just in the case of the nondegenerateHubbard model. X-operators provide the natural language for describingquasiparticles in the Hubbard subbands with unusual doping andtemperature-dependent band structures.

Book Electronic Transport Theories

Download or read book Electronic Transport Theories written by Navinder Singh and published by CRC Press. This book was released on 2016-11-17 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintaining a practical perspective, Electronic Transport Theories: From Weakly to Strongly Correlated Materials provides an integrative overview and comprehensive coverage of electronic transport with pedagogy in view. It covers traditional theories, such as the Boltzmann transport equation and the Kubo formula, along with recent theories of transport in strongly correlated materials. The understood case of electronic transport in metals is treated first, and then transport issues in strange metals are reviewed. Topics discussed are: the Drude-Lorentz theory; the traditional Bloch-Boltzmann theory and the Grüneisen formula; the Nyquist theorem and its formulation by Callen and Welton; the Kubo formalism; the Langevin equation approach; the Wölfle-Götze memory function formalism; the Kohn-Luttinger theory of transport; and some recent theories dealing with strange metals. This book is an invaluable resource for undergraduate students, post-graduate students, and researchers with a background in quantum mechanics, statistical mechanics, and mathematical methods.

Book Lecture Notes on Electron Correlation and Magnetism

Download or read book Lecture Notes on Electron Correlation and Magnetism written by Patrik Fazekas and published by World Scientific. This book was released on 1999 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readership: Graduate students and researchers in condensed matter physics.

Book Correlated Electrons  from Models to Materials

Download or read book Correlated Electrons from Models to Materials written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2012 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Study of Electron Correlation Driven Superconductivity in Systems with Coexisting Wide and Narrow Bands

Download or read book Theoretical Study of Electron Correlation Driven Superconductivity in Systems with Coexisting Wide and Narrow Bands written by Daisuke Ogura and published by Springer Nature. This book was released on 2019-10-23 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the study of superconductivity in systems with coexisting wide and narrow bands. It has been previously suggested that superconductivity can be enhanced in systems with coexisting wide and narrow bands when the Fermi level is near the narrow band edge. In this book, the authors study two problems concerning this mechanism in order to: (a) provide a systematic understanding of the role of strong electron correlation effects, and (b) propose a realistic candidate material which meets the ideal criteria for high-Tc superconductivity. Regarding the role of strong correlation effects, the FLEX+DMFT method is adopted. Based on systematic calculations, the pairing mechanism is found to be indeed valid even when the strong correlation effect is considered within the formalism. In the second half of the book, the authors propose a feasible candidate material by introducing the concept of the “hidden ladder” electronic structure, arising from the combination of the bilayer lattice structure and the anisotropic orbitals of the electrons. As such, the book contributes a valuable theoretical guiding principle for seeking unknown high-Tc superconductors.

Book Study of Two particle Response and Phase Changes in Strongly Correlated Systems Using Dynamical Mean Field Theory

Download or read book Study of Two particle Response and Phase Changes in Strongly Correlated Systems Using Dynamical Mean Field Theory written by Bismayan Chakrabarti and published by . This book was released on 2017 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of strongly correlated materials is currently perhaps one of the most active areas of research in condensed matter physics. Strongly correlated materials contain localized electronic states which are often hybridized with more itinerant electrons. This interplay between localized and delocalized degrees of freedom means that these compounds have highly complex phase diagrams which makes these compounds very challenging to understand from a theoretical standpoint. Computer simulations have proved to be an invaluable tool in this regard with state of the art abinitio simulation techniques harnessing the ever-increasing power of modern computers to produce highly accurate descriptions of a variety of strongly correlated materials. One of the most powerful simulation techniques currently in existence is Dynamical Mean Field Theory (DMFT). This thesis describes this powerful simulation technique and its applications to various material systems, as well as addressing some theoretical questions concerning particular implementations of DMFT. This thesis is divided into two parts. In part 1, we describe the theory behind DMFT and its amalgamation with Density Functional Theory (DFT+DMFT). In chapters 2 and 3, we provide the basic theory theory behind DFT and DMFT respectively. In chapter 4, we describe how these two methods are merged to give us the computational framework that is used in this thesis, namely DFT+DMFT. Finally, we round o part 1 of the thesis in chapter 5, which provides a description of the Continuous Time Quantum Monte Carlo (CTQMC) impurity solver, which is at the heart of the DFT+DMFT algorithm and is used extensively throughout this thesis. In part two of the thesis, we apply the DFT+DMFT framework to address some important problems in condensed matter physics. In chapter 6, we study the Magnetic Spectral Function of strongly correlated f-shell materials to understand two important problems in condensed matter physics, namely the volume collapse transition in Cerium and the valence uctuating state ground state of -Pu. In chapter 7, we study the contribution of lattice parameters and electronic entropy to study the decades-old problem of understanding the spin state transition observed in LaCoO3, where we show how lattice expansion, octahedral rotations and electronic entropy are all essential in stabilizing the high-spin state at high temperature. In chapter 8, we switch to studying a more theoretical problem by looking at the problems with using the highly popular constrained Random Phase Approximation (cRPA) method to estimate the screening of local inter-electronic repulsion in strongly correlated systems. We show that cRPA systematically underestimates screening in such systems which makes it an unsuitable method for estimating the repulsion parameter (U) used in impurity solvers. We then develop an alternate method to estimate the screening using the full local polarization which overcomes many of these limitations. Chapter 9 contains all the conclusions obtained in this thesis, followed by references and appendices.

Book Strong Correlation and Superconductivity

Download or read book Strong Correlation and Superconductivity written by Hidetoshi Fukuyama and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the ffiM Japan International Sympo sium on Strong Correlation and Superconductivity, which was held in Keidan ren Guest House at the foot of Mt. Fuji, May 21-25, 1989. The purpose of the Symposium was to provide an opportunity for discus sions on the problem of strong correlation of electrons in the context of high-Tc superconductivity. Sixty-eight scientists were invited from seven countries and forty-three papers were presented in the Symposium. Soon after the discovery ofhigh-Tc superconducting oxides, Professor P. W. Anderson proposed that the essence of high-Tc superconductivity lies in the strong correlation among the electrons in these materials. This proposal has stimulated a wide range of theoretical investigations on this profound and dif ficult problem, which are expected to lead eventually to new concepts describ ing strong electron correlation. In the Symposium, Anderson himself started lively discussions by his talk entitled "Myth and Reality in High-Tc Supercon ductivity", which was followed by various reports on theoretical studies and experimental results. Concise and thoughtful summaries of experiment and theory were given by Professors H. R. Ott and P. A. Lee, respectively. It is our hope that this volume reflects the present status of the research activity on this outstanding problem from the viewpoint of the basic physics and that it will further stimulate the effort to understand these fascinating systems, the high-Tc oxides.