Download or read book Computational Methods in Plasma Physics written by Stephen Jardin and published by CRC Press. This book was released on 2010-06-02 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts neces
Download or read book Computational Plasma Physics written by Toshi Tajima and published by CRC Press. This book was released on 2018-03-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of plasmas is an extremely rich and complex subject as the variety of topics addressed in this book demonstrates. This richness and complexity demands new and powerful techniques for investigating plasma physics. An outgrowth from his graduate course teaching, now with corrections, Tajima's text provides not only a lucid introduction to computational plasma physics, but also offers the reader many examples of the way numerical modeling, properly handled, can provide valuable physical understanding of the nonlinear aspects so often encountered in both laboratory and astrophysical plasmas. Included here are computational methods for modern nonlinear physics as applied to hydrodynamic turbulence, solitons, fast reconnection of magnetic fields, anomalous transports, dynamics of the sun, and more. The text contains examples of problems now solved using computational techniques including those concerning finite-size particles, spectral techniques, implicit differencing, gyrokinetic approaches, and particle simulation.
Download or read book Theory of Low Temperature Plasma Physics written by Shi Nguyen-Kuok and published by Springer. This book was released on 2016-11-11 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the reader an overview of the basic approaches to the theoretical description of low-temperature plasmas, covering numerical methods, mathematical models and modeling techniques. The main methods of calculating the cross sections of plasma particle interaction and the solution of the kinetic Boltzmann equation for determining the transport coefficients of the plasma are also presented. The results of calculations of thermodynamic properties, transport coefficients, the equilibrium particle-interaction cross sections and two-temperature plasmas are also discussed. Later chapters consider applications, and the results of simulation and calculation of plasma parameters in induction and arc plasma torches are presented. The complex physical processes in high-frequency plasmas and arc plasmas, the internal and external parameters of plasma torches, near-electrode processes, heat transfer, the flow of solid particles in plasmas and other phenomena are considered. The book is intended for professionals involved in the theoretical study of low-temperature plasmas and the design of plasma torches, and will be useful for advanced students in related areas.
Download or read book Plasma Science written by National Research Council and published by National Academies Press. This book was released on 1995-02-01 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.
Download or read book Fundamentals of Plasma Physics written by Paul M. Bellan and published by Cambridge University Press. This book was released on 2008-07-31 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the Fokker–Planck treatment of collisions. The book concludes by discussing unconventional plasmas such as non-neutral and dusty plasmas. Written for beginning graduate students and advanced undergraduates, this text emphasizes the fundamental principles that apply across many different contexts.
Download or read book Computational Many Particle Physics written by Holger Fehske and published by Springer. This book was released on 2007-12-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Download or read book Ideal MHD written by Jeffrey P. Freidberg and published by Cambridge University Press. This book was released on 2014-06-26 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.
Download or read book Plasma Physics written by Andreas Dinklage and published by Springer Science & Business Media. This book was released on 2005-06-09 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Physics: Confinement, Transport and Collective Effects provides an overview of modern plasma research with special focus on confinement and related issues. Beginning with a broad introduction, the book leads graduate students and researchers – also those from related fields - to an understanding of the state-of-the-art in modern plasma physics. Furthermore, it presents a methodological cross section ranging from plasma applications and plasma diagnostics to numerical simulations, the latter providing an increasingly important link between theory and experiment. Effective references guide the reader from introductory texts through to contemporary research. Some related exercises in computational plasma physics are supplied on a special web site
Download or read book Introduction to Plasma Physics written by D. A. Gurnett and published by Cambridge University Press. This book was released on 2005-01-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate/beginning graduate text on space and laboratory plasma physics.
Download or read book Visual and Computational Plasma Physics written by James J Y Hsu and published by World Scientific Publishing Company. This book was released on 2014-08-20 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains MATLAB programs to demonstrate the numerical algorithms, the analytical approaches, and the physical principles. It starts with single particle, single fluid, and single wave, then the kinetic theory, the transport, the magnetohydrodynamics, and the nonlinear physics. The book emphasizes on the numerical algorithm and the analytical asymptology to tackle problems in plasma physics, and to demonstrate the underlying physics principles by graphical visualization. Students are introduced to the multiple time and multiple space scales as they learn the basic plasma phenomena, and are requested to solve problems with either MATLAB or C++. This book is targetting at the senior and graduate level. The emphasis of this book is to teach students to solve problems from the features and characteristics of the problem itself. It provides the students for the most important learning that is not knowing the solution, but knowing how to figure out the solution.
Download or read book Basic Principles Of Plasma Physics written by Setsuo Ichimaru and published by CRC Press. This book was released on 2018-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes a statistical approach to the basics of plasma physics.
Download or read book Computational Approaches in Physics written by Maria Fyta and published by Morgan & Claypool Publishers. This book was released on 2016-11-01 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.
Download or read book Plasma Astrophysics written by Toshi Tajima and published by Westview Press. This book was released on 2002-01-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twentieth century has witnessed the transformation of astronomy from celestial mechanics to astrophysics. While optical telescopes may have presented a peek into the structure of the constituents of the universe, such as stars and galaxies, new windows of observation have revealed far more amorphous objects, from nebulae and sheets to filaments and voids, whose "violent" processes include flares, shocks, accretion disks and jets. In these processes, plasma is often the constituent matter-- as well as the medium through which the astrophysical setting becomes so violent. In this graduate level text, Tajima and Shibata offer a new synthesis starting where classic works on plasma physics left off. Beginning with a view of plasma astrophysics through fundamental processes of quasi-magnetostatic equilibria, quasi-hydrostatic equilibria, and non-equilibria, the authors go on to develop unique approaches to violent astrophysical plasmas-- as opposed to the more quiescent laboratory variety-- and their processes. The text continues with an exploration of the fundamental processes in hydrostatic, magnetostatic, and gravitational objects. The final chapter is devoted to a discussion of the applications of plasma astrophysics to cosmology, anticipating future developments in this exciting field.This text will be of enormous use to graduate-- and some advanced undergraduate-- students, as well as to physicists entering the field of plasma physics.
Download or read book Statistical Physics of Dense Plasmas written by Setsuo Ichimaru and published by CRC Press. This book was released on 2019-01-07 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
Download or read book Collective Modes in Inhomogeneous Plasmas written by Jan Weiland and published by CRC Press. This book was released on 1999-01-01 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collective Modes in Inhomogeneous Plasmas: Kinetic and Advanced Fluid Theory presents the collective drift and MHD-type modes in inhomogeneous plasmas from the point of view of two-fluid and kinetic theory. Written by an internationally respected plasma transport theoretician, this introductory monograph emphasizes the description of the plasma rather than the geometry to present a more general approach to a large class of plasma problems. Starting with generalized fluid equations for low frequency phenomena, the author shows how drift waves and MHD-type modes can arise from the effects of inhomogeneities in the plasma. The kinetic description is then presented to reveal a host of phenomena ranging from vortex modes and finite Larmor radius effects to trapped and fast particle instabilities, transport, diffusion, and other advanced fluid effects. Theoretical and computational plasma physicists modeling confined plasmas will find this illustrated book a very valuable addition to their collection.
Download or read book Plasma Physics An Introductory Course written by R. O. Dendy and published by Cambridge University Press. This book was released on 1995-02-24 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last thirty years, international summer schools in plasma physics have been held at Culham Laboratory, site of the Joint European Torus fusion project. This book has been developed from lectures given at these schools, and provides a wide-ranging introduction to the subject. The first few chapters deal with the fundamentals of plasma physics. In subsequent chapters, the applications and properties of man-made and naturally occurring plasmas are discussed. In addition, there are chapters devoted to general phenomena such as turbulence and chaos. The computational techniques employed in modelling plasma behaviour are also described. Since no prior knowledge of plasma physics is assumed, this book will act as an ideal introduction to the subject for final year undergraduates and beginning graduate students in physics, astronomy, mathematics and engineering.
Download or read book The Physics of Laser Plasmas and Applications Volume 1 written by Hideaki Takabe and published by Springer Nature. This book was released on 2020-08-28 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.