EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Handbook of Theoretical and Computational Nanotechnology

Download or read book Handbook of Theoretical and Computational Nanotechnology written by Michael Rieth and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Theoretical and Computational Nanotechnology  Nanodevice modeling and nanoelectronics

Download or read book Handbook of Theoretical and Computational Nanotechnology Nanodevice modeling and nanoelectronics written by Michael Rieth and published by . This book was released on 2006 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 1: Basic Concepts, Nanomachines and Bionanodevices; Volume 2: Atomistic Simulations - Algorithms and Methods; Volume 3: Quantum and Molecular Computing, and Quantum Simulations; Volume 4: Nanomechanics and Multiscale Modeling; Volume 5: Transport Phenomena and Nanoscale Processes; Volume 6: Bioinformatics, Nanomedicine and Drug Delivery; Volume 7: Magnetic Nanostructures and Nano-optics; Volume 8: Functional Nanomaterials, Nanoparticles and Polymer Nanostructures; Volume 9: Nanocomposites, Nano-Assemblies, and Nanosurfaces; Volume 10: Nanodevice Modeling and Nanoelectronics.

Book Computational Nanotechnology

Download or read book Computational Nanotechnology written by Sarhan M. Musa and published by CRC Press. This book was released on 2018-09-03 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.

Book Handbook of Theoretical and Computational Nanotechnology  Quantum and molecular computing  quantum simulations

Download or read book Handbook of Theoretical and Computational Nanotechnology Quantum and molecular computing quantum simulations written by Michael Rieth and published by . This book was released on 2006 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Theoretical and Computational Nanotechnology  Functional nanomaterials  nanoparticles  and polymer design

Download or read book Handbook of Theoretical and Computational Nanotechnology Functional nanomaterials nanoparticles and polymer design written by Michael Rieth and published by . This book was released on 2006 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Theoretical and Computational Nanotechnology  Bioinformatics  nanomedicine  and drug design

Download or read book Handbook of Theoretical and Computational Nanotechnology Bioinformatics nanomedicine and drug design written by Michael Rieth and published by . This book was released on 2006 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 1: Basic Concepts, Nanomachines and Bionanodevices; Volume 2: Atomistic Simulations - Algorithms and Methods; Volume 3: Quantum and Molecular Computing, and Quantum Simulations; Volume 4: Nanomechanics and Multiscale Modeling; Volume 5: Transport Phenomena and Nanoscale Processes; Volume 6: Bioinformatics, Nanomedicine and Drug Delivery; Volume 7: Magnetic Nanostructures and Nano-optics; Volume 8: Functional Nanomaterials, Nanoparticles and Polymer Nanostructures; Volume 9: Nanocomposites, Nano-Assemblies, and Nanosurfaces; Volume 10: Nanodevice Modeling and Nanoelectronics.

Book Computational Nanoscience

Download or read book Computational Nanoscience written by Elena Bichoutskaia and published by Royal Society of Chemistry. This book was released on 2011 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscience is one of the most exciting scientific disciplines as it is concerned with materials and systems, which exhibit novel and significantly improved physical, chemical and biological properties due to their small nanoscale size. It stretches across the whole spectrum of modern science including medicine and health, physics, engineering and chemistry. Providing a deep understanding of the behaviour of matter at the scale of individual atoms and molecules, it takes a crucial step towards future applications of nanotechnology. The remarkable improvements in both theoretical methods and computational techniques make it possible for computational nanoscience to achieve a new level of accuracy. Computational nanoscience is now a discipline capable of leading and guiding experimental efforts. Computational Nanoscience addresses modern challenges in computational science, within the context of the rapidly evolving field of nanotechnology. It satisfies the need for a comprehensive, yet concise and up-to-date, survey of new developments and applications presented by the world's leading academics. It documents major, recent advances in scientific computation, mathematical models and theory development that specifically target the applications in nanotechnology. Suitable for theoreticians, experimental researchers and students, the book shows readers what computational nanoscience can achieve, and how it may be applied in their own work. The twelve chapters cover topics including the concepts behind recent breakthroughs in nanoscience, the development of cutting edge simulation tools, and the variety of new applications.

Book Trends in Computational Nanomechanics

Download or read book Trends in Computational Nanomechanics written by Traian Dumitrica and published by Springer Science & Business Media. This book was released on 2010-03-14 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trends in Computational Nanomechanics reviews recent advances in analytical and computational modeling frameworks to describe the mechanics of materials on scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum. The book presents new approaches in the theory of nanosystems, recent developments in theoretical and computational methods for studying problems in which multiple length and/or time scales must be simultaneously resolved, as well as example applications in nanomechanics. This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.

Book Computational Nanotoxicology

Download or read book Computational Nanotoxicology written by Agnieszka Gajewicz and published by CRC Press. This book was released on 2019-11-13 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of computational methods that support human health and environmental risk assessment of engineered nanomaterials (ENMs) has attracted great interest because the application of these methods enables us to fill existing experimental data gaps. However, considering the high degree of complexity and multifunctionality of ENMs, computational methods originally developed for regular chemicals cannot always be applied explicitly in nanotoxicology. This book discusses the current state of the art and future needs in the development of computational modeling techniques for nanotoxicology. It focuses on (i) computational chemistry (quantum mechanics, semi-empirical methods, density functional theory, molecular mechanics, molecular dynamics), (ii) nanochemoinformatic methods (quantitative structure–activity relationship modeling, grouping, read-across), and (iii) nanobioinformatic methods (genomics, transcriptomics, proteomics, metabolomics). It reviews methods of calculating molecular descriptors sufficient to characterize the structure of nanoparticles, specifies recent trends in the validation of computational methods, and discusses ways to cope with the uncertainty of predictions. In addition, it highlights the status quo and further challenges in the application of computational methods in regulation (e.g., REACH, OECD) and in industry for product development and optimization and the future directions for increasing acceptance of computational modeling for nanotoxicology.

Book Topics in Theoretical and Computational Nanoscience

Download or read book Topics in Theoretical and Computational Nanoscience written by Jeffrey Michael McMahon and published by Springer Science & Business Media. This book was released on 2011-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes. This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: · At the single nanoparticle level, how well do experimental and classical electrodynamics agree? · What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment? · Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this? · Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects? · Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?

Book Computational Nanoscience

    Book Details:
  • Author : Kálmán Varga
  • Publisher : Cambridge University Press
  • Release : 2011-04-14
  • ISBN : 1139501054
  • Pages : 445 pages

Download or read book Computational Nanoscience written by Kálmán Varga and published by Cambridge University Press. This book was released on 2011-04-14 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems.