EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Financial Risk Management with Bayesian Estimation of GARCH Models

Download or read book Financial Risk Management with Bayesian Estimation of GARCH Models written by David Ardia and published by Springer Science & Business Media. This book was released on 2008-05-08 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in detail methodologies for the Bayesian estimation of sing- regime and regime-switching GARCH models. These models are widespread and essential tools in n ancial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique. As this study aims to demonstrate, the Bayesian approach o ers an attractive alternative which enables small sample results, robust estimation, model discrimination and probabilistic statements on nonlinear functions of the model parameters. The author is indebted to numerous individuals for help in the preparation of this study. Primarily, I owe a great debt to Prof. Dr. Philippe J. Deschamps who inspired me to study Bayesian econometrics, suggested the subject, guided me under his supervision and encouraged my research. I would also like to thank Prof. Dr. Martin Wallmeier and my colleagues of the Department of Quantitative Economics, in particular Michael Beer, Roberto Cerratti and Gilles Kaltenrieder, for their useful comments and discussions. I am very indebted to my friends Carlos Ord as Criado, Julien A. Straubhaar, J er ^ ome Ph. A. Taillard and Mathieu Vuilleumier, for their support in the elds of economics, mathematics and statistics. Thanks also to my friend Kevin Barnes who helped with my English in this work. Finally, I am greatly indebted to my parents and grandparents for their support and encouragement while I was struggling with the writing of this thesis.

Book Volatility and Correlation

Download or read book Volatility and Correlation written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2005-07-08 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School

Book Handbook of Economic Forecasting

Download or read book Handbook of Economic Forecasting written by Graham Elliott and published by Elsevier. This book was released on 2013-08-23 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics

Book Machine Learning for Financial Risk Management with Python

Download or read book Machine Learning for Financial Risk Management with Python written by Abdullah Karasan and published by "O'Reilly Media, Inc.". This book was released on 2021-12-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models

Book Advances in Markov Switching Models

Download or read book Advances in Markov Switching Models written by James D. Hamilton and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of state-of-the-art papers on the properties of business cycles and financial analysis. The individual contributions cover new advances in Markov-switching models with applications to business cycle research and finance. The introduction surveys the existing methods and new results of the last decade. Individual chapters study features of the U. S. and European business cycles with particular focus on the role of monetary policy, oil shocks and co movements among key variables. The short-run versus long-run consequences of an economic recession are also discussed. Another area that is featured is an extensive analysis of currency crises and the possibility of bubbles or fads in stock prices. A concluding chapter offers useful new results on testing for this kind of regime-switching behaviour. Overall, the book provides a state-of-the-art over view of new directions in methods and results for estimation and inference based on the use of Markov-switching time-series analysis. A special feature of the book is that it includes an illustration of a wide range of applications based on a common methodology. It is expected that the theme of the book will be of particular interest to the macroeconomics readers as well as econometrics professionals, scholars and graduate students. We wish to express our gratitude to the authors for their strong contributions and the reviewers for their assistance and careful attention to detail in their reports.

Book Forecasting Volatility in the Financial Markets

Download or read book Forecasting Volatility in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2011-02-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling

Book Essentials of Time Series for Financial Applications

Download or read book Essentials of Time Series for Financial Applications written by Massimo Guidolin and published by Academic Press. This book was released on 2018-05-29 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)

Book Nonlinear Time Series

    Book Details:
  • Author : Jianqing Fan
  • Publisher : Springer Science & Business Media
  • Release : 2008-09-11
  • ISBN : 0387693955
  • Pages : 565 pages

Download or read book Nonlinear Time Series written by Jianqing Fan and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.

Book Computational Science and Its Applications   ICCSA 2004

Download or read book Computational Science and Its Applications ICCSA 2004 written by Antonio Laganà and published by Springer. This book was released on 2004-04-29 with total page 1081 pages. Available in PDF, EPUB and Kindle. Book excerpt: The natural mission of Computational Science is to tackle all sorts of human problems and to work out intelligent automata aimed at alleviating the b- den of working out suitable tools for solving complex problems. For this reason ComputationalScience,thoughoriginatingfromtheneedtosolvethemostch- lenging problems in science and engineering (computational science is the key player in the ?ght to gain fundamental advances in astronomy, biology, che- stry, environmental science, physics and several other scienti?c and engineering disciplines) is increasingly turning its attention to all ?elds of human activity. In all activities, in fact, intensive computation, information handling, kn- ledge synthesis, the use of ad-hoc devices, etc. increasingly need to be exploited and coordinated regardless of the location of both the users and the (various and heterogeneous) computing platforms. As a result the key to understanding the explosive growth of this discipline lies in two adjectives that more and more appropriately refer to Computational Science and its applications: interoperable and ubiquitous. Numerous examples of ubiquitous and interoperable tools and applicationsaregiveninthepresentfourLNCSvolumescontainingthecontri- tions delivered at the 2004 International Conference on Computational Science and its Applications (ICCSA 2004) held in Assisi, Italy, May 14–17, 2004.

Book Handbook of Economic Forecasting

Download or read book Handbook of Economic Forecasting written by Graham Elliott and published by Elsevier. This book was released on 2013-10-24 with total page 1386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics

Book Complex Systems in Finance and Econometrics

Download or read book Complex Systems in Finance and Econometrics written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Book A Practical Guide to Forecasting Financial Market Volatility

Download or read book A Practical Guide to Forecasting Financial Market Volatility written by Ser-Huang Poon and published by John Wiley & Sons. This book was released on 2005-08-19 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.

Book Dynamic Models for Volatility and Heavy Tails

Download or read book Dynamic Models for Volatility and Heavy Tails written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 2013-04-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.

Book Modelling Financial Time Series

Download or read book Modelling Financial Time Series written by Stephen J. Taylor and published by World Scientific. This book was released on 2008 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.

Book Linear Models and Time Series Analysis

Download or read book Linear Models and Time Series Analysis written by Marc S. Paolella and published by John Wiley & Sons. This book was released on 2018-12-17 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.

Book Financial Risk Forecasting

Download or read book Financial Risk Forecasting written by Jon Danielsson and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.

Book Statistics and Data Analysis for Financial Engineering

Download or read book Statistics and Data Analysis for Financial Engineering written by David Ruppert and published by Springer. This book was released on 2015-04-21 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.