Download or read book Unitary Group Representations in Physics Probability and Number Theory written by George Whitelaw Mackey and published by Addison Wesley Publishing Company. This book was released on 1989 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Unitary Representations of Groups Duals and Characters written by Bachir Bekka and published by American Mathematical Soc.. This book was released on 2020-11-16 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unitary representations of groups play an important role in many subjects, including number theory, geometry, probability theory, partial differential equations, and quantum mechanics. This monograph focuses on dual spaces associated to a group, which are spaces of building blocks of general unitary representations. Special attention is paid to discrete groups for which the unitary dual, the most common dual space, has proven to be not useful in general and for which other duals spaces have to be considered, such as the primitive dual, the normal quasi-dual, or spaces of characters. The book offers a detailed exposition of these alternative dual spaces and covers the basic facts about unitary representations and operator algebras needed for their study. Complete and elementary proofs are provided for most of the fundamental results that up to now have been accessible only in original papers and appear here for the first time in textbook form. A special feature of this monograph is that the theory is systematically illustrated by a family of examples of discrete groups for which the various dual spaces are discussed in great detail: infinite dihedral group, Heisenberg groups, affine groups of fields, solvable Baumslag-Solitar group, lamplighter group, and general and special linear groups. The book will appeal to graduate students who wish to learn the basics facts of an important topic and provides a useful resource for researchers from a variety of areas. The only prerequisites are a basic background in group theory, measure theory, and operator algebras.
Download or read book The Theory of Unitary Group Representations written by George Whitelaw Mackey and published by . This book was released on 1955 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quantum Theory Groups and Representations written by Peter Woit and published by Springer. This book was released on 2017-11-01 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.
Download or read book Cohomological Induction and Unitary Representations PMS 45 Volume 45 written by Anthony W. Knapp and published by Princeton University Press. This book was released on 2016-06-02 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.
Download or read book Unitary Representations of Reductive Lie Groups written by David A. Vogan and published by Princeton University Press. This book was released on 1987-10-21 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.
Download or read book The Theory of Group Characters and Matrix Representations of Groups written by Dudley Ernest Littlewood and published by American Mathematical Soc.. This book was released on 2005 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapters present the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding of beautiful classical results about group representations.
Download or read book A Course in Finite Group Representation Theory written by Peter Webb and published by Cambridge University Press. This book was released on 2016-08-19 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Download or read book Unitary Representation Theory of Exponential Lie Groups written by Horst Leptin and published by Walter de Gruyter. This book was released on 2011-06-01 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Download or read book Group Theory in a Nutshell for Physicists written by A. Zee and published by Princeton University Press. This book was released on 2016-03-29 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)
Download or read book Introduction to Representation Theory written by Pavel I. Etingof and published by American Mathematical Soc.. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Download or read book An Introduction to the Representation Theory of Groups written by Emmanuel Kowalski and published by American Mathematical Society. This book was released on 2014-08-28 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representation theory is an important part of modern mathematics, not only as a subject in its own right but also as a tool for many applications. It provides a means for exploiting symmetry, making it particularly useful in number theory, algebraic geometry, and differential geometry, as well as classical and modern physics. The goal of this book is to present, in a motivated manner, the basic formalism of representation theory as well as some important applications. The style is intended to allow the reader to gain access to the insights and ideas of representation theory--not only to verify that a certain result is true, but also to explain why it is important and why the proof is natural. The presentation emphasizes the fact that the ideas of representation theory appear, sometimes in slightly different ways, in many contexts. Thus the book discusses in some detail the fundamental notions of representation theory for arbitrary groups. It then considers the special case of complex representations of finite groups and discusses the representations of compact groups, in both cases with some important applications. There is a short introduction to algebraic groups as well as an introduction to unitary representations of some noncompact groups. The text includes many exercises and examples.
Download or read book Theory of Group Representations and Applications written by Asim Orhan Barut and published by World Scientific. This book was released on 1986 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie!algebras - Topological!groups - Lie!groups - Representations - Special!functions - Induced!representations.
Download or read book Unitary Representations of the Poincar Group and Relativistic Wave Equations written by Yoshio Ohnuki and published by World Scientific. This book was released on 1988 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to an extensive and systematic study on unitary representations of the Poincar group. The Poincar group plays an important role in understanding the relativistic picture of particles in quantum mechanics. Complete knowledge of every free particle states and their behaviour can be obtained once all the unitary irreducible representations of the Poincar group are found. It is a surprising fact that a simple framework such as the Poincar group, when unified with quantum theory, fixes our possible picture of particles severely and without exception. In this connection, the theory of unitary representations of the Poincar group provides a fundamental concept of relativistic quantum mechanics and field theory.
Download or read book Lie Groups Lie Algebras and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Download or read book The Maximal Subgroups of the Low Dimensional Finite Classical Groups written by John N. Bray and published by Cambridge University Press. This book was released on 2013-07-25 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book classifies the maximal subgroups of the almost simple finite classical groups in dimension up to 12; it also describes the maximal subgroups of the almost simple finite exceptional groups with socle one of Sz(q), G2(q), 2G2(q) or 3D4(q). Theoretical and computational tools are used throughout, with downloadable Magma code provided. The exposition contains a wealth of information on the structure and action of the geometric subgroups of classical groups, but the reader will also encounter methods for analysing the structure and maximality of almost simple subgroups of almost simple groups. Additionally, this book contains detailed information on using Magma to calculate with representations over number fields and finite fields. Featured within are previously unseen results and over 80 tables describing the maximal subgroups, making this volume an essential reference for researchers. It also functions as a graduate-level textbook on finite simple groups, computational group theory and representation theory.
Download or read book Automorphic Representations of Unitary Groups in Three Variables written by Jonathan David Rogawski and published by Princeton University Press. This book was released on 1990-09-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop the stable trace formula for unitary groups in three variables. The stable trace formula is then applied to obtain a classification of automorphic representations. This work represents the first case in which the stable trace formula has been worked out beyond the case of SL (2) and related groups. Many phenomena which will appear in the general case present themselves already for these unitary groups.