EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book the theory of rulled surfaces

Download or read book the theory of rulled surfaces written by and published by CUP Archive. This book was released on with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Theory of Ruled Surfaces

Download or read book The Theory of Ruled Surfaces written by W. L. Edge and published by Cambridge University Press. This book was released on 2011-06-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1931 book contains tables of quintic and sextic ruled surfaces, classified by their double curves and bitangent developables.

Book Holomorphic Curves in Low Dimensions

Download or read book Holomorphic Curves in Low Dimensions written by Chris Wendl and published by Springer. This book was released on 2018-06-28 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019

Book Computational Line Geometry

Download or read book Computational Line Geometry written by Helmut Pottmann and published by Springer Science & Business Media. This book was released on 2001-06-20 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: " A unique and fascinating blend, which is shown to be useful for a variety of applications, including robotics, geometrical optics, computer animation, and geometric design. The contents of the book are visualized by a wealth of carefully chosen illustrations, making the book a shear pleasure to read, or even to just browse in." Mathematical Reviews

Book Complex Algebraic Surfaces

Download or read book Complex Algebraic Surfaces written by Arnaud Beauville and published by Cambridge University Press. This book was released on 1996-06-28 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.

Book Modern Differential Geometry of Curves and Surfaces with Mathematica

Download or read book Modern Differential Geometry of Curves and Surfaces with Mathematica written by Elsa Abbena and published by CRC Press. This book was released on 2017-09-06 with total page 1024 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

Book Graphic Imprints

Download or read book Graphic Imprints written by Carlos L. Marcos and published by Springer. This book was released on 2018-05-30 with total page 1686 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the Proceedings of the International Congress of Graphic Design in Architecture, EGA 2018, held in Alicante, Spain, May 30-June 1, 2018. About 200 professionals and researchers from 18 different countries attended the Congress. This book will be of interest to researchers in the field of architecture and Engineering. Topics discussed are Innovations in Architecture, graphic design and architecture, history and heritage among others.

Book Differential Geometry

    Book Details:
  • Author : Wolfgang Kühnel
  • Publisher : American Mathematical Soc.
  • Release : 2006
  • ISBN : 0821839888
  • Pages : 394 pages

Download or read book Differential Geometry written by Wolfgang Kühnel and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Book Lectures on K3 Surfaces

    Book Details:
  • Author : Daniel Huybrechts
  • Publisher : Cambridge University Press
  • Release : 2016-09-26
  • ISBN : 1316797252
  • Pages : 499 pages

Download or read book Lectures on K3 Surfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2016-09-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Book Classical Algebraic Geometry

Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Book Algebraic Surfaces

    Book Details:
  • Author : Oscar Zariski
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642619916
  • Pages : 285 pages

Download or read book Algebraic Surfaces written by Oscar Zariski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "The author's book [...] saw its first edition in 1935. [...] Now as before, the original text of the book is an excellent source for an interested reader to study the methods of classical algebraic geometry, and to find the great old results. [...] a timelessly beautiful pearl in the cultural heritage of mathematics as a whole." Zentralblatt MATH

Book Projective differential geometry of curves and ruled surfaces

Download or read book Projective differential geometry of curves and ruled surfaces written by Ernest Julius Wilczynski and published by . This book was released on 1906 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rational Algebraic Curves

    Book Details:
  • Author : J. Rafael Sendra
  • Publisher : Springer Science & Business Media
  • Release : 2007-12-10
  • ISBN : 3540737251
  • Pages : 273 pages

Download or read book Rational Algebraic Curves written by J. Rafael Sendra and published by Springer Science & Business Media. This book was released on 2007-12-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.

Book Lectures on Classical Differential Geometry

Download or read book Lectures on Classical Differential Geometry written by Dirk J. Struik and published by Courier Corporation. This book was released on 2012-04-26 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

Book Differential Geometry

    Book Details:
  • Author : Erwin Kreyszig
  • Publisher : Courier Corporation
  • Release : 2013-04-26
  • ISBN : 0486318621
  • Pages : 384 pages

Download or read book Differential Geometry written by Erwin Kreyszig and published by Courier Corporation. This book was released on 2013-04-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Book Differential Geometry of Three Dimensions

Download or read book Differential Geometry of Three Dimensions written by C. E. Weatherburn and published by Cambridge University Press. This book was released on 1927 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1930, as the second of a two-part set, this textbook contains a vectorial treatment of geometry.

Book Optimization with Ruled Surface

Download or read book Optimization with Ruled Surface written by Yayun Zhou and published by Logos Verlag Berlin GmbH. This book was released on 2010 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation provides a novel design approach with respect to ruled surface, which is a special type of surface generated by moving a line in the space. Ruled surface is a favorable choice in manufacture and can be found in many application fields. In this dissertation, a ruled surface in Euclidean space is represented as a curve on a dual unit sphere (DUS) by employing the Klein mapping and the Study mapping. A novel definition of dual spherical spline is proposed and a complete kinematic ruled surface approximation algorithm is developed and tested with turbocharger blade data. More generally, a ruled surface is defined by several control points of a dual spherical spline. It provides an initial prototype for the blade geometry optimization with ruled surface. Finally, combining the kinematic ruled surface approximation algorithm with the offset theory, a novel design and manu- facturing strategy is proposed. A desired surface is presented as a tool path of the flank milling method with a cylindrical tool in 5-axis CNC machining. It integrates the manufacturing requirements in the design phase, which can reduce the design- cycle time and save the manufacturing cost.