EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Technique of Pseudodifferential Operators

Download or read book The Technique of Pseudodifferential Operators written by Heinz Otto Cordes and published by Cambridge University Press. This book was released on 1995-02-23 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudodifferential operators arise naturally in a solution of boundary problems for partial differential equations. The formalism of these operators serves to make the Fourier-Laplace method applicable for nonconstant coefficient equations. This book presents the technique of pseudodifferential operators and its applications, especially to the Dirac theory of quantum mechanics. The treatment uses 'Leibniz formulas' with integral remainders or as asymptotic series. While a pseudodifferential operator is commonly defined by an integral formula, it also may be described by invariance under action of a Lie group. The author discusses connections to the theory of C*-algebras, invariant algebras of pseudodifferential operators under hyperbolic evolution, and the relation of the hyperbolic theory to the propagation of maximal ideals. The Technique of Pseudodifferential Operators will be of particular interest to researchers in partial differential equations and mathematical physics.

Book Pseudodifferential Operators and Nonlinear PDE

Download or read book Pseudodifferential Operators and Nonlinear PDE written by Michael Taylor and published by Springer Science & Business Media. This book was released on 1991-11-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.

Book Pseudodifferential Methods in Number Theory

Download or read book Pseudodifferential Methods in Number Theory written by André Unterberger and published by Birkhäuser. This book was released on 2018-07-24 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classically developed as a tool for partial differential equations, the analysis of operators known as pseudodifferential analysis is here regarded as a possible help in questions of arithmetic. The operators which make up the main subject of the book can be characterized in terms of congruence arithmetic. They enjoy a Eulerian structure, and are applied to the search for new conditions equivalent to the Riemann hypothesis. These consist in the validity of certain parameter-dependent estimates for a class of Hermitian forms of finite rank. The Littlewood criterion, involving sums of Möbius coefficients, and the Weil so-called explicit formula, which leads to his positivity criterion, fit within this scheme, using in the first case Weyl's pseudodifferential calculus, in the second case Fuchs'. The book should be of interest to people looking for new possible approaches to the Riemann hypothesis, also to new perspectives on pseudodifferential analysis and on the way it combines with modular form theory. Analysts will have no difficulty with the arithmetic aspects, with which, save for very few exceptions, no previous acquaintance is necessary.

Book Louis Boutet de Monvel  Selected Works

Download or read book Louis Boutet de Monvel Selected Works written by Victor W. Guillemin and published by Birkhäuser. This book was released on 2017-05-05 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles by Louis Boutet de Monvel and presents his contributions to the theory of partial differential equations and analysis. The works selected here reveal his central role in the development of his field, including three cornerstones: firstly, analytic pseudodifferential operators, which have become a fundamental aspect of analytic microlocal analysis, and secondly the Boutet de Monvel calculus for boundary problems for elliptic partial differential operators, which is still an important tool also in index theory. Thirdly, Boutet de Monvel was one of the first people to recognize the importance of the existence of generalized functions, whose singularities are concentrated on a single ray in phase space, which led him to make essential contributions to hypoelliptic operators and to a very successful and influential calculus of Toeplitz operators with applications to spectral and index theory. Other topics treated here include microlocal analysis, star products and deformation quantization as well as problems in several complex variables, index theory and geometric quantization. This book will appeal to both experts in the field and students who are new to this subject.

Book Pseudo Differential Operators

Download or read book Pseudo Differential Operators written by Hans G. Feichtinger and published by Springer. This book was released on 2008-08-15 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.

Book Advances in Pseudo Differential Operators

Download or read book Advances in Pseudo Differential Operators written by Ryuichi Ashino and published by Springer Science & Business Media. This book was released on 2004-08-20 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of the plenary lectures and invited talks in the special session on pseudo-differential operators given at the Fourth Congress of the International Society for Analysis, Applications and Computation (ISAAC) held at York University in Toronto, August 11-16, 2003. The theme is to look at pseudo-differential operators in a very general sense and to report recent advances in a broad spectrum of topics, such as pde, quantization, filters and localization operators, modulation spaces, and numerical experiments in wavelet transforms and orthonormal wavelet bases.

Book Tools for PDE

    Book Details:
  • Author : Michael E. Taylor
  • Publisher : American Mathematical Soc.
  • Release : 2000
  • ISBN : 0821843788
  • Pages : 274 pages

Download or read book Tools for PDE written by Michael E. Taylor and published by American Mathematical Soc.. This book was released on 2000 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing three related tools that are useful in the analysis of partial differential equations (PDEs) arising from the classical study of singular integral operators, this text considers pseudodifferential operators, paradifferential operators, and layer potentials.

Book Pseudo Differential Operators and Symmetries

Download or read book Pseudo Differential Operators and Symmetries written by Michael Ruzhansky and published by Springer Science & Business Media. This book was released on 2009-12-29 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the development of the theory of pseudo-di?erential n operators on spaces with symmetries. Such spaces are the Euclidean space R ,the n torus T , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-di?erential operators but also to show parallels between di?erent approaches to pseudo-di?erential operators on di?erent spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the ?rst time. However, di?erent spaces on which we develop the theory of pseudo-di?er- tial operators require di?erent backgrounds. Thus, while operators on the - clidean space in Chapter 2 rely on the well-known Euclidean Fourier analysis, pseudo-di?erentialoperatorsonthetorusandmoregeneralLiegroupsinChapters 4 and 10 require certain backgrounds in discrete analysis and in the representation theory of compact Lie groups, which we therefore present in Chapter 3 and in Part III,respectively. Moreover,anyonewhowishestoworkwithpseudo-di?erential- erators on Lie groups will certainly bene?t from a good grasp of certain aspects of representation theory. That is why we present the main elements of this theory in Part III, thus eliminating the necessity for the reader to consult other sources for most of the time. Similarly, the backgrounds for the theory of pseudo-di?erential 3 operators on S and SU(2) developed in Chapter 12 can be found in Chapter 11 presented in a self-contained way suitable for immediate use.

Book Discrete Fourier Analysis

Download or read book Discrete Fourier Analysis written by M. W. Wong and published by Springer Science & Business Media. This book was released on 2011-05-30 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.

Book Modulation Spaces

    Book Details:
  • Author : Árpád Bényi
  • Publisher : Springer Nature
  • Release : 2020-02-22
  • ISBN : 1071603329
  • Pages : 177 pages

Download or read book Modulation Spaces written by Árpád Bényi and published by Springer Nature. This book was released on 2020-02-22 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph serves as a much-needed, self-contained reference on the topic of modulation spaces. By gathering together state-of-the-art developments and previously unexplored applications, readers will be motivated to make effective use of this topic in future research. Because modulation spaces have historically only received a cursory treatment, this book will fill a gap in time-frequency analysis literature, and offer readers a convenient and timely resource. Foundational concepts and definitions in functional, harmonic, and real analysis are reviewed in the first chapter, which is then followed by introducing modulation spaces. The focus then expands to the many valuable applications of modulation spaces, such as linear and multilinear pseudodifferential operators, and dispersive partial differential equations. Because it is almost entirely self-contained, these insights will be accessible to a wide audience of interested readers. Modulation Spaces will be an ideal reference for researchers in time-frequency analysis and nonlinear partial differential equations. It will also appeal to graduate students and seasoned researchers who seek an introduction to the time-frequency analysis of nonlinear dispersive partial differential equations.

Book The Diversity and Beauty of Applied Operator Theory

Download or read book The Diversity and Beauty of Applied Operator Theory written by Albrecht Böttcher and published by Springer. This book was released on 2018-04-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schrödinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.

Book A Guide to Distribution Theory and Fourier Transforms

Download or read book A Guide to Distribution Theory and Fourier Transforms written by Robert S. Strichartz and published by World Scientific. This book was released on 2003 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

Book Pseudodifferential Operators and Spectral Theory

Download or read book Pseudodifferential Operators and Spectral Theory written by M.A. Shubin and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.

Book The Analysis of Linear Partial Differential Operators III

Download or read book The Analysis of Linear Partial Differential Operators III written by Lars Hörmander and published by Springer Science & Business Media. This book was released on 2007-03-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987. "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987.

Book Semiclassical Analysis

Download or read book Semiclassical Analysis written by Maciej Zworski and published by American Mathematical Soc.. This book was released on 2012 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.

Book Pseudo Differential Equations And Stochastics Over Non Archimedean Fields

Download or read book Pseudo Differential Equations And Stochastics Over Non Archimedean Fields written by Anatoly Kochubei and published by CRC Press. This book was released on 2001-08-03 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equat

Book Metrics on the Phase Space and Non Selfadjoint Pseudo Differential Operators

Download or read book Metrics on the Phase Space and Non Selfadjoint Pseudo Differential Operators written by Nicolas Lerner and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ̈ ormander (Chapter 18 in the book [73]) on this topic.