Download or read book Fundamentals Of Electroweak Theory Second Edition written by Jiri Horejsi and published by World Scientific. This book was released on 2024-06-11 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the lecture course taught by the author for about three decades at Charles University. The author gives a thorough and easy-to-read account of the basic principles of the standard model of electroweak interactions, describes various theories of electromagnetic and weak interactions, and explains the gauge theory of electroweak interactions. The criterion of the tree-level unitarity is used throughout the text to check the gradual steps leading to the renormalizable electroweak theory. Five appendices expound on some special techniques of the Standard Model, used in the main body of the text.The book can be read with just a preliminary knowledge of quantum field theory. In comparison with the first edition of the book published more than 20 years ago, new passages concerning the Higgs boson are added, as well as some new problems and solutions.
Download or read book Gauge Theories of the Strong Weak and Electromagnetic Interactions written by Chris Quigg and published by Princeton University Press. This book was released on 2013-09-23 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Download or read book Gauge Theories in Particle Physics A Practical Introduction Volume 2 Non Abelian Gauge Theories written by Ian J R Aitchison and published by CRC Press. This book was released on 2012-12-17 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 of this revised and updated edition provides an accessible and practical introduction to the two non-Abelian quantum gauge field theories of the Standard Model of particle physics: quantum chromodynamics (QCD) and the Glashow-Salam-Weinberg (GSW) electroweak theory. This volume covers much of the experimental progress made in the last ten years. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles in neutrino physics. Exploring a new era in particle physics, this edition discusses one of the most recent and exciting breakthroughs—the discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. New to the Fourth Edition New chapter on CP violation and oscillations in mesonic and neutrino systems New section on three-generation quark mixing and the CKM matrix Improved discussion of two-jet cross section in electron-positron annihilation New section on jet algorithms Recent lattice QCD calculations with dynamical fermions New section on effective Lagrangians for spontaneously broken chiral symmetry, including the three-flavor extension, meson mass relations, and chiral perturbation theory Update of asymptotic freedom Discussion of the historic discovery of a Higgs-like boson The authors discuss the main conceptual points of the theories, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Download or read book Gauge Theory of Weak Interactions written by Walter Greiner and published by Springer Science & Business Media. This book was released on 2009 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gauge Theory of Weak Interactions treats the unification of electromagnetic and weak interactions and considers related phenomena. First, the Fermi theory of beta decay is presented, followed by a discussion of parity violation, clarifying the importance of symmetries. Then the concept of a spontaneously broken gauge theory is introduced, and all necessary mathematical tools are carefully developed. The "standard model" of unified electroweak interactions is thoroughly discussed including current developments. The final chapter contains an introduction to unified theories of strong and electroweak interactions. Numerous solved examples and problems make this volume uniquely suited as a text for an advanced course. Thisfourth edition has been carefully revised.
Download or read book Gauge Theories in Particle Physics A Practical Introduction Fourth Edition 2 Volume set written by Ian J.R. Aitchison and published by CRC Press. This book was released on 2021-01-14 with total page 979 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Download or read book Gauge Theories in Particle Physics 40th Anniversary Edition A Practical Introduction Volume 1 written by Ian J R Aitchison and published by CRC Press. This book was released on 2024-06-19 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 1 of this updated edition provides a broad introduction to the first of these theories, QED. The book begins with self-contained presentations of relativistic quantum mechanics and electromagnetism as a gauge theory. Lorentz transformations, discrete symmetries, and Majorana fermions are covered. A unique feature is the elementary introduction to quantum field theory, leading in easy stages to covariant perturbation theory and Feynman graphs, thereby establishing a firm foundation for the formal and conceptual framework upon which the subsequent development of the three quantum gauge field theories of the Standard Model is based. Detailed tree-level calculations of physical processes in QED are presented, followed by an elementary treatment of one-loop renormalization of a model scalar field theory, and then by the realistic case of QED. The text includes updates on nucleon structure functions and the status of QED, in particular the precision tests provided by the anomalous magnetic moments of the electron and muon. The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight. Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an introduction to the Standard Model of particle physics.
Download or read book Gauge Theories in Particle Physics 40th Anniversary Edition written by Ian J.R. Aitchison and published by CRC Press. This book was released on 2024-08-06 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of the Higgs and top quark sectors, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. The first volume provides a broad and self-contained introduction to the first of these theories, QED. A unique feature is the elementary introduction to quantum field theory, leading in easy stages to covariant perturbation theory and Feynman graphs, thereby establishing a firm foundation for the formal and conceptual framework upon which the subsequent development of the three quantum gauge field theories of the Standard Model is based. The second volume covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: Tests of the Standard Model in the Higgs and top quark sectors The naturalness problem and responses to it going beyond the Standard Model The Standard Model as an effective field theory This revised and updated anniversary edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points in both mathematical and physical aspects, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight. This set should serve as a valuable handbook for students and researchers in advanced particle physics looking for an introduction to the Standard Model of particle physics.
Download or read book The Electroweak Unification Theory written by Bernardo Adeva Andany and published by Bernardo Adeva. This book was released on 2019-05-04 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supernovae explosion, combustion of solar hydrogen to form helium, heavy quark decay, or nuclear beta radiation, all weak interaction phenomena, are not unrelated to electromagnetism, but closely linked to it through the Higgs field. This ebook contains a modern introduction to the electroweak unification theory, as part of the so called Standard Model of particle physics. Not only some of the key theoretical ideas are exposed in a precise way, but also the experiments that revealed them. The main highlights of the theory consolidation process are examined which, concerning its experimental counterpart, span over 40 years, from the discovery of neutral currents in1973 to the Higgs boson in 2012. The reader is assumed to have been introduced to Quantum Mechanics and theories based on the gauge invariance principle, and to be familiar with Dirac’s theory for the relativistic electron. The course is specially suited for undergraduate students in physics, as part of an optional subject of elementary particles. The course consists in nine lectures, that on the blackboard take about 90 minutes each. It contains a very select collection of problems and exercises, having as a connecting thread the calculation of the lifetime of elementary fermions and bosons, as well as the comprehension of some experimental results of historical relevance.
Download or read book Gauge Theories in Particle Physics Third Edition 2 volume set written by Ian J.R. Aitchison and published by CRC Press. This book was released on 2004-01-01 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.
Download or read book Introduction To The Theory Of The Early Universe Hot Big Bang Theory Second Edition written by Valery A Rubakov and published by World Scientific. This book was released on 2017-06-29 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written from the viewpoint that a deep connection exists between cosmology and particle physics. It presents the results and ideas on both the homogeneous and isotropic Universe at the hot stage of its evolution and in later stages. The main chapters describe in a systematic and pedagogical way established facts and concepts on the early and the present Universe. The comprehensive treatment, hence, serves as a modern introduction to this rapidly developing field of science. To help in reading the chapters without having to constantly consult other texts, essential materials from General Relativity and the theory of elementary particles are collected in the appendices. Various hypotheses dealing with unsolved problems of cosmology, and often alternative to each other, are discussed at a more advanced level. These concern dark matter, dark energy, matter-antimatter asymmetry, etc.Particle physics and cosmology underwent rapid development between the first and the second editions of this book. In the second edition, many chapters and sections have been revised, and numerical values of particle physics and cosmological parameters have been updated.
Download or read book Gauge Theories in Particle Physics Third Edition 2 volume set written by Ian J.R. Aitchison and published by CRC Press. This book was released on 2004-01-01 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.
Download or read book From Spinors to Supersymmetry written by and published by Cambridge University Press. This book was released on with total page 1030 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book From Spinors to Supersymmetry written by Herbi K. Dreiner and published by Cambridge University Press. This book was released on 2023-06-08 with total page 1031 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supersymmetry is an extension of the successful Standard Model of particle physics; it relies on the principle that fermions and bosons are related by a symmetry, leading to an elegant predictive structure for quantum field theory. This textbook provides a comprehensive and pedagogical introduction to supersymmetry and spinor techniques in quantum field theory. By utilising the two-component spinor formalism for fermions, the authors provide many examples of practical calculations relevant for collider physics signatures, anomalies, and radiative corrections. They present in detail the component field and superspace formulations of supersymmetry and explore related concepts, including the theory of extended Higgs sectors, models of grand unification, and the origin of neutrino masses. Numerous exercises are provided at the end of each chapter. Aimed at graduate students and researchers, this volume provides a clear and unified treatment of theoretical concepts that are at the frontiers of high energy particle physics.
Download or read book The Standard Model and Beyond written by Paul Langacker and published by CRC Press. This book was released on 2017-06-26 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.
Download or read book The Standard Model written by Cliff Burgess and published by Cambridge University Press. This book was released on 2007 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2006 book uses the standard model as a vehicle for introducing quantum field theory.
Download or read book Quantum Field Theory written by Franz Mandl and published by Wiley-Blackwell. This book was released on 1993 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W?? and Z? bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W?? bosons and especially Z? bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical interpretation is stressed at every point and its use is illustrated in detailed applications. After studying this book, the reader should be able to calculate any process in lowest order of perturbation theory for both QED and the standard electro-weak theory, and in addition, calculate lowest order radiative corrections in QED using the powerful technique of dimensional regularization. Contents: Preface; 1 Photons and electromagnetic field; 2 Lagrangian field theory; 3 The Klein--Gordon field; 4 The Dirac field; 5 Photons: covariant theory; 6 The S-matrix expansion; 7 Feynman diagrams and rules in QED; 8 QED processes in lowest order; 9 Radiative corrections; 10 Regularization; 11 Weak interactions; 13 Spontaneous symmetry breaking; 14 The standard electro-weak theory; Appendix A The Dirac equation; Appendix B Feynman rules and formulae for perturbation theory; Index.
Download or read book Lectures On Quantum Field Theory Second Edition written by Ashok Das and published by World Scientific. This book was released on 2020-07-24 with total page 941 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the lectures of a two-semester course on quantum field theory, presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis on the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactions are also developed systematically. Regularization and (BPHZ) renormalization of field theories as well as gauge theories are discussed in detail, leading to a derivation of the renormalization group equation. In addition, two chapters — one on the Dirac quantization of constrained systems and another on discrete symmetries — are included for completeness, although these are not covered in the two-semester course.This second edition includes two new chapters, one on Nielsen identities and the other on basics of global supersymmetry. It also includes two appendices, one on fermions in arbitrary dimensions and the other on gauge invariant potentials and the Fock-Schwinger gauge.