EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finite Element Methods for Particle Transport

Download or read book Finite Element Methods for Particle Transport written by Ron Tunstall Ackroyd and published by Taylor & Francis Group. This book was released on 1997 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on the transport of neutral particles, neutrons and photons, using the finite element method to address practical problems in nuclear power and mineral prospecting. Includes discussions of how the method began and has matured to become a practical tool complementing the stochastic Monte Carlo method, spatial finite elements, examples of calculations, equivalent forms of the Boltzmann equation, neutron streaming in voids, some aspects of discontinuous variational solutions, complementary principles and benchmarking, time-dependent transport, and modelling three-dimensional systems. Double spaced. Annotation copyright by Book News, Inc., Portland, OR

Book The Solution of Radiation Transport Equations with Adaptive Finite Elements

Download or read book The Solution of Radiation Transport Equations with Adaptive Finite Elements written by Linda Stals and published by . This book was released on 2001 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "We compare the performance of an inexact Newton-multigrid method and Full Approximation Storage multigrid when solving radiation transport equations. We also present an adaptive refinement algorithm and explore its impact on the solution of such equations."

Book P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems

Download or read book P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-20 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning Kang, Kab S. Langley Research Center AD-A406878, ICASE-2002-28, NASA-CR-2002-211762

Book ICASE Semiannual Report

Download or read book ICASE Semiannual Report written by and published by . This book was released on 2002 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report summarizes research conducted at ICASE in applied mathematics, computer science, fluid mechanics, and structures and material sciences during the period October 1, 2000 through March 31, 2001.

Book Radiation in Enclosures

    Book Details:
  • Author : Aristide Mbiock
  • Publisher : Springer Science & Business Media
  • Release : 2000-03-01
  • ISBN : 354066095X
  • Pages : 230 pages

Download or read book Radiation in Enclosures written by Aristide Mbiock and published by Springer Science & Business Media. This book was released on 2000-03-01 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last half century, the development and testing of prediction models of combustion chamber performance have been an ongoing task at the International Flame Research Foundation (IFRF) in IJmuiden in the Netherlands and at many other research organizations. This task has brought forth a hierarchy of more or less standard numerical models for heat transfer predictions, in particular for the prediction of radiative heat transfer. Unfortunately all the methods developed, which certainly have a good physical foundation, are based on a large number of extreme sim plifications or uncontrolled assumptions. To date, the ever more stringent requirements for efficient production and use of energy and heat from com bustion chambers call for prediction algorithms of higher accuracy and more detailed radiative heat transfer calculations. The driving forces behind this are advanced technology requirements, the costs of large-scale experimen tal work, and the limitation of physical modeling. This interest is growing more acute and has increased the need for the publication of a textbook for more accurate treatment of radiative transfer in enclosures. The writing of a textbook on radiative heat transfer, however, in ad dition to working regularly on other subjects is a rather difficult task for which some years of meditation are necessary. The book must satisfy two requirements which are not easily reconciled. From the mathematical point of view, it must be written in accordance with standards of mathemati cal rigor and precision.

Book Carbon Dioxide and Climate

Download or read book Carbon Dioxide and Climate written by and published by . This book was released on 1990 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parallel Solution of Partial Differential Equations

Download or read book Parallel Solution of Partial Differential Equations written by Petter Bjorstad and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.

Book The Finite Element Method in Heat Transfer and Fluid Dynamics

Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Th

Book The Finite Element Method in Heat Transfer and Fluid Dynamics  Second Edition

Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics Second Edition written by J. N. Reddy and published by CRC Press. This book was released on 2000-12-20 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.

Book Thermal Radiation Heat Transfer

Download or read book Thermal Radiation Heat Transfer written by John R. Howell and published by CRC Press. This book was released on 2020-12-10 with total page 967 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. Features: Offers full treatment of radiative transfer and radiation exchange in enclosures. Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions. Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles. Features expanded coverage of near-field radiative transfer theory and applications. Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer. This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource. Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by D. Sloan and published by Elsevier. This book was released on 2012-12-02 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.

Book Methods in Monte Carlo Solution of the Radiation Transport Equation

Download or read book Methods in Monte Carlo Solution of the Radiation Transport Equation written by Malvin H. Kalos and published by . This book was released on 1962 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discussion is given of certain methods of importance sampling and scoring in the Monte Carlo solution of the radiation transport equation.

Book Numerical Methods in Multidimensional Radiative Transfer

Download or read book Numerical Methods in Multidimensional Radiative Transfer written by Guido Kanschat and published by Springer Science & Business Media. This book was released on 2008-12-24 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, radiative transfer has been the domain of astrophysicists and climatologists. In nuclear technology one has been dealing with the ana- gous equations of neutron transport. In recent years, applications of radiative transferincombustionmachinedesignandinmedicinebecamemoreandmore important. In all these disciplines one uses the radiative transfer equation to model the formation of the radiation ?eld and its propagation. For slabs and spheres e?ective algorithms for the solution of the transfer equation have been ava- able for quite some time. In addition, the analysis of the equation is quite well developed. Unfortunately, in many modern applications the approximation of a 1D geometry is no longer adequate and one has to consider the full 3D dependencies. This makes the modeling immensely more intricate. The main reasons for the di?culties result from the fact that not only the dimension of the geometric space has to be increased but one also has to employ two angle variables (instead of one) and very often one has to consider frequency coupling (due to motion or redistribution in spectral lines). In actual cal- lations this leads to extremely large matrices which, in addition, are usually badly conditioned and therefore require special care. Analytical solutions are not available except for very special cases. Although radiative transfer problems are interesting also from a ma- ematical point of view, mathematicians have largely neglected the transfer equation for a long time.

Book Mathematics   Key Technology for the Future

Download or read book Mathematics Key Technology for the Future written by Willi Jäger and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient transfer between science and society is crucial for their future development. The rapid progress of information technology and computer systems offers a large potential and new perspectives for solving complex problems. Mathematical modelling and simulation have become important tools not only in scientific investigations but also in analysing, planning and controlling technological and economic processes. Mathematics, imbedded in an interdisciplinary concept, has become a key technology. The book covers the results of a variety of major projects in industrial mathematics following an initiative of the German Federal Ministry of Education and Research. All projects are collaborations of industrial companies and university-based researchers, and range from automotive industry to computer technology and medical visualisation. In general, the projects presented in this volume prove that new mathematical ideas and methods can be decisive for the solution of industrial and economic problems.

Book Analysis and Numerics for Conservation Laws

Download or read book Analysis and Numerics for Conservation Laws written by Gerald Warnecke and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whatdoasupernovaexplosioninouterspace,?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics.