EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Self assembly of Lamellae forming Block Copolymer for High Resolution Nanolithography

Download or read book The Self assembly of Lamellae forming Block Copolymer for High Resolution Nanolithography written by Zhiwei Sun and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis will be focused on the thin film self-assembly and high resolution nanolithography of lamellae-forming PS-b-P2VP block copolymer. Some of the scientific and engineering problems of block copolymer self-assembly will be studied using the state-of-the-art characterization facilities including AFM, SEM and synchrotron radiation X-ray scattering, pushing forward the application of block copolymer in high resolution nanolithography, storage media, and separation membranes, etc. The first challenge is the design of BCP with small domain spacing, which defines the resolution of BCP nanolithography. Small domain spacing can be achieved by reducing the degree of polymerization, but order-to-disorder transition happens when the critical [chi]N is reached. In this thesis, we will first discuss the disorder-to-order transition of low molecular weight PS-b-P2VP by increasing the [chi] parameter using salt doping. The domain spacing of PS-b-P2VP will be pushed down one step further by design BCPs with star shape chain architecture, achieving lamellar nanostructures with sub-10 nm repeating period. Another challenge that hampers the application of BCP is the defect in the self-assembled BCP thin film. The defects in the thin film reduces the grain sizes of BCP lattices and also brings in new challenges in lithography and pattern transfer, thus the defect density in the self-assembled BCP thin film has to be reduced. It is important to understand how the defects were generated and how it can be removed using annealing and directed self-assembly (DSA). In this thesis, in situ grazing incidence small angle X-ray scattering will be used to characterize the solvent vapor annealing of P2VP-b-PS-b-P2VP triblock copolymer in thin film. The trade-off between the in-plane and out-of-plane defect density was revealed during solvent evaporation. Furthermore, long-range ordered lamellar line patterns were prepared using directed self-assembly on patterned substrate.

Book Introduction to Microlithography

Download or read book Introduction to Microlithography written by L. F. Thompson and published by Academic. This book was released on 1994 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the theory, materials, and processes used in the lithographic process by which circuit elements are fabricated (it is these elements' decreasing size that has made possible the miniaturization of electronic devices). After a brief historical introduction, four major topics are discussed: the physics of the lithographic process, organic resist materials, resist processing, and plasma etching. The new edition reflects the many changes that have occurred since the 1983 publication of this tutorial/reference. Annotation copyright by Book News, Inc., Portland, OR

Book Directed Self assembly of Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates

Download or read book Directed Self assembly of Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates written by Erik WiIliam Edwards and published by . This book was released on 2005 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Block Copolymer Self assembly   a Computational Approach Towards Novel Morphologies

Download or read book Block Copolymer Self assembly a Computational Approach Towards Novel Morphologies written by Karim Raafat Gadelrab and published by . This book was released on 2019 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spontaneous self-assembly of materials is a phenomenon exhibited by different molecular systems. Among many, Block copolymers (BCPs) proved to be particularly interesting due to their ability to microphase separate into periodic domains. Nonetheless, the rising need for arbitrary, complex, 3D nanoscale morphology shows that what is commonly achievable is quite limited. Expanding the range of BCPs morphologies could be attained through the implementation of a host of strategies that could be used concurrently. Using directed self-assembly (DSA), a sphere forming BCP was assembled in a randomly displaced post template to study system resilience towards defect creation. Template shear-like distortion seemed to govern local defect generation. Defect clusters with symmetries compatible with that of the BCP showed enhanced stability. Using 44 and 32434 Archimedean tiling templates that are incompatible with BCP six-fold symmetry created low symmetry patterns with an emergent behavior dependent on pattern size and shape. A variation of DSA is studied using modulated substrates. Layer-by-layer deposition of cylinder forming BCPs was investigated. Self-consistent field theory (SCFT) and strong segregation theory SST were employed to provide the understanding and the conditions under which particular orientations of consecutive layers were produced. Furthermore, deep functionalized trenches were employed to create vertically standing high-[chi] BCP structures. Changing annealing conditions for a self-assembled lamellar structure evolved the assembled pattern to a tubular morphology that is non-native to diblock copolymers. A rather fundamental but challenging strategy to go beyond the standard motifs common to BCPs is to synthesize multiblock molecules with an expanded design space. Triblock copolymers produced bilayer perforated lamellar morphology. SCFT analysis showed a large window of stability of such structures in thin films. In addition, a model for bottlebrush BCPs (BBCPs) was constructed to investigate the characteristics of BBCPs self-assembly. Pre-stacked diblock sidechains showed improved microphase separation while providing domain spacing relevant to lithography applications. A rich phase diagram was constructed at different block concentrations. The ability to explore new strategies to discover potential equilibrium morphologies in BCPs is supported by strong numerical modeling and simulations efforts. Accelerating SCFT performance would greatly benefit BCP phase discovery. Preliminary work discussed the first attempt to Neural Network (NN) assisted SCFT. The use of NN was able to cut on the required calculations steps to reach equilibrium morphology, demonstrating accelerated calculation, and escaping trapped states, with no effect on final structure.

Book Points  Lines  and Walls

Download or read book Points Lines and Walls written by Maurice Kléman and published by John Wiley & Sons. This book was released on 1983 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Directed Self assembly of Block Copolymers and Ternary Block Copolymer homopolymer Blends on Chemically Patterned Surfaces Into Device oriented Geometries

Download or read book Directed Self assembly of Block Copolymers and Ternary Block Copolymer homopolymer Blends on Chemically Patterned Surfaces Into Device oriented Geometries written by Mark P. Stoykovich and published by . This book was released on 2007 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Block Co polymer Self assembly

Download or read book Block Co polymer Self assembly written by Areej Alameer and published by . This book was released on 2017 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contemporary electronic industry heavily relies on its capability to fabricate electronic devices with small feature size. The race to fabricate higher number of electronic devices per area has faced critical miniaturization challenges. In order to meet the increasing demand of industry for fabrication of smaller electronic devices, new methods were being studied and developed to deal with challenges in fabrication of the very small. Nanotechnology and application of nanomaterials is one of the alternative avenues for fabrication of such miniature structures. For many decades, photolithography has been the core of semiconductor industry and device fabrication. However, to meet the industry requirements and deal with miniaturization challenges, variety of photolithography techniques coupled with nanotechnology has been studied and developed. One of such nanotechnology driven techniques that has significantly attracted researchers as well as the semiconductor industry stake holder's attention is bottom-up method based on self-assembly of nanoparticles. Low processing cost, high resolution and large scale processing compatibility are among the prominent advantages of this method. This thesis mainly focuses on explaining the application of block copolymer (BCP) self-assembly in nanolithography, and their ability to phase separate into ordered and chemically distinct domains of 10s nm size. Moreover, this thesis presents an effective way to obtain a perpendicular self- assembled PS-b-PMMA with very high aspect ratio which is preferred for pattern transfer. To deliver this unique orientation, 3-MPTS is used to neutralize the surface. This method depends on vapor deposition of 3-MPTS at room temperature for two hours or less prior to deposition of PS- b-PMMA.

Book Polymer Thin Films

    Book Details:
  • Author : Ophelia Kwan Chui Tsui
  • Publisher : World Scientific
  • Release : 2008
  • ISBN : 9812818820
  • Pages : 312 pages

Download or read book Polymer Thin Films written by Ophelia Kwan Chui Tsui and published by World Scientific. This book was released on 2008 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Block copolymer thin films / J.-Y. Wang, S. Park and T. P. Russell -- ch. 2. Equilibration of block copolymer films on chemically patterned surfaces / G. S. W. Craig, H. Kang and P. F. Nealey -- ch. 3. Structure formation and evolution in confined cylinder-forming block copolymers / G. J. A. Sevink and J. G. E. M. Fraaije -- ch. 4. Block copolymer lithography for magnetic device fabrication / J. Y. Cheng and C. A. Ross -- ch. 5. Hierarchical structuring of polymer nanoparticles by self-organization / M. Shimomura ... [et al.] -- ch. 6. Wrinkling polymers for surface structure control and functionality / E. P. Chan and A. J. Crosby -- ch. 7. Crystallization in polymer thin films: morphology and growth / R. M. Van Horn and S. Z. D. Cheng -- ch. 8. Friction at soft polymer surface / M. K. Chaudhury, K. Vorvolakos and D. Malotky -- ch. 9. Relationship between molecular architecture, large-strain mechanical response and adhesive performance of model, block copolymer-based pressure sensitive adhesives / C. Creton and K. R. Shull -- ch. 10. Stability and dewetting of thin liquid films / K. Jacobs, R. Seemann and S. Herminghaus -- ch. 11. Anomalous dynamics of polymer Films / O. K. C. Tsui.

Book Directed Assembly of Block Copolymers Using Chemically and Topographically Patterned Substrates to Control and Direct the Order of Various Nanodomains

Download or read book Directed Assembly of Block Copolymers Using Chemically and Topographically Patterned Substrates to Control and Direct the Order of Various Nanodomains written by Sang-Min Park, 1974- and published by . This book was released on 2007 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Directed Self assembly of Block Co polymers for Nano manufacturing

Download or read book Directed Self assembly of Block Co polymers for Nano manufacturing written by Roel Gronheid and published by Woodhead Publishing. This book was released on 2015-07-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Book Directed Self Assembly of Nanostructured Block Copolymer Thin Films Via Dynamic Thermal Annealing

Download or read book Directed Self Assembly of Nanostructured Block Copolymer Thin Films Via Dynamic Thermal Annealing written by Monali N. Basutkar and published by . This book was released on 2018 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aggressive miniaturization of nanoelectronic devices poses a pressing challenge in using conventional patterning technologies that are fast approaching their intrinsic resolution limits. Molecular self-assembling block copolymers (BCPs) are promising candidates for integrating and extending the current photolithographic constraints, facilitating the fabrication of next-generation nanotemplating materials via directed self-assembly. The current work focuses on the development of viable dynamic self-assembly strategies for achieving highly ordered versatile BCP nanostructures with precise feature size control and registration, as well as provides insights into the fundamentals of BCP thin film self-assembly driven by dynamic annealing fields A continuous template-free method toward rapid fabrication (2-4 minutes) of highly ordered through-thickness vertical lamellar polystyrene-block-poly(methyl methacrylate) l-PS-b-PMMA) microdomains in l-BCP films on quartz (silicon oxide) substrate was developed. A molecular relaxation induced vertical l-BCP ordering occurs under a transient macroscopic vertical strain field, imposed by a high film thermal expansion rate under sharp thermal gradient cold zone annealing (CZA-S). The high thermal gradient had to be selectively tuned with the CZA-S sweep rates for controlling the polymer chain relaxation dynamics for vertical order. Comparable conventional static thermal annealing of identical l-BCP films using vacuum oven failed to induce the desired nanostructure. Morphology evolution tracked in real time along the CZA-S thermal gradient profile using in situ grazing incidence small angle x-ray scattering (GISAXS) demonstrated four regimes of ordering: microphase separation from a quenched-disordered state (Regime 1), initial formation of vertical lamellae due to the sharp thermal gradient imposed on the l-BCP film (Regime 2), polygrain structure resulting from the broad [del] T region around Tmax (Regime 3), and an ultimate highly vertically ordered l-BCP morphology due to grain coarsening on the cooling edge (Regime 4). A detailed examination of the influence of CZA process parameters such as temperature gradient field strength ([del] T) of the thermal annealing profile, sweep velocity (v) and the corresponding annealing time (t) on the mechanism and dynamics of l-BCP ordering was performed. The complex interplay between thermodynamic equilibrium, surface and interfacial energies, confinement effects and BCP ordering kinetics was also investigated to determine the effect of BCP film attributes on morphological development. By tuning the CZA-S process dynamics with the l-BCP relaxation timescales, this process created vertical l-BCP nanodomains with controlled feature sizes via molecular weight control. Besides regulating the out-of-plane nanostructure orientation, the alignment of BCP microdomains in-plane was locally tuned by biasing the BCP assembly energetics using an edge-templating strategy. The relaxation of residual stresses and minimization of chain distortion energy penalties along the film boundary were the factors governing the edge-templating mechanism that spontaneously aligns the BCP microdomains orthogonal to the film-discontinuity. Both, kinetic and thermodynamic factors were associated with the boundary-propagation effect. This research demonstrates a new paradigm for advancement of BCP nanotemplating and nanolithography applications due to its potential to fabricate user-defined hierarchical micro-nanopatterns.

Book Next Generation Materials for Block Copolymer Lithography

Download or read book Next Generation Materials for Block Copolymer Lithography written by Michael Joseph Maher and published by . This book was released on 2016 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electronics industry is a trillion dollar industry that has drastically changed everyday life. Advances in lithography have enabled manufacturers to continually shrink the dimensions of microelectronic components, which has resulted in devices that outperform previous generations. Unfortunately, conventional patterning techniques are approaching their physical resolution limits. The ability to economically pattern sub-10 nm features is necessary for the future growth of the industry. Block copolymer self-assembly has emerged as a leading candidate for next generation lithography and nanofabrication because block copolymers self-assemble into periodic nanostructures (e.g. cylinders and lamellae) on a length scale that exceeds the physical limits of optical lithography. However, for block copolymer lithography to be realized, the block copolymer domains need to form sub-10 nm features and display etch resistance for pattern transfer. Additionally, the orientation, alignment, and placement of block copolymer domains must be carefully controlled. This dissertation discusses the synthesis, orientation and alignment of silicon-containing BCPs that are inherently etch resistant and provide access to nanostructures in the sub-10 nm regime. The orientation of domains is controlled by interactions between each block copolymer domain and each interface. Preferential interactions between the block copolymer domains and the either the substrate or air interface lead to a parallel orientation of domains, which is not useful for lithography. Non-preferential (“neutral”) interactions are needed to promote the desired perpendicular orientation. The synthesis of surface treatments and top coats is described, and methods to determine the preferential and non-preferential interactions are reported. Orientation control is demonstrated via rapid thermal annealing between two neutral surfaces. Combining orientation control of block copolymer domains with well established directed self-assembly strategies was used to produce perpendicular domains with long range order. Chapter 1 provides an introduction to lithography and block copolymer self-assembly. Chapter 2 discusses the synthesis of silicon-containing block copolymers. Chapters 4-6 focus on controlling block copolymer domain orientation, and Chapter 7 focuses on directed self-assembly. Chapter 8 covers spatial orientation control of domains using photopatternable interfaces. Finally, Chapter 9 covers tin-containing polymers that are resistant to fluorine-containing etch chemistries and can be used to pattern silicon oxide.

Book Self Assembly of Block Copolymers

Download or read book Self Assembly of Block Copolymers written by Anay Chaube and published by . This book was released on 2008 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) Block Copolymer self assembly holds great promise in fabrication of such devices requiring periodic, high resolution pattern generation. If issues such as long range order, pattern uniformity and placement accuracy of magnetic dots can be effectively resolved, block copolymer self assembly enabled lithography can quickly become the main stay of the multimillion dollar hard disk industry.

Book Self assembly and Metal Oxide Vapor Phase Infiltration of High  chi  Block Copolymers

Download or read book Self assembly and Metal Oxide Vapor Phase Infiltration of High chi Block Copolymers written by Jonathan W. Choi and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Directed self-assembly with block copolymers (BCP) is an emerging method to form high-resolution, periodic nanostructures for applications including: nanoelectronics, membranes/filtrations, bit-patterned media, to protein immobilization. BCPs can self-assemble into a dense, periodic array of nanostructures such as spheres, cylinders, and lamellae with feature sizes of three to hundreds of nanometers. In contrast to conventional methods such as electron-beam lithography, BCP lithography is a low cost, scalable, high throughput method. New low molecular weight BCPs with highly incompatible blocks (known as high-[chi] BCPs) are being developed for accessing single nanometer feature sizes. In addition, the emergence of new materials such as graphene, transitional metal dichalogenides, and black phosphorus, have led to interesting scientific and technological discoveries when these materials are patterned or confined in the nanometer regime. The work presented in this thesis addresses many of the challenges in the assembly of emerging functional BCPs and pattern transferring at small-length scales using BCP lithography. These challenges include: 1) nanopatterning substrates other than silicon, like graphene, 2) pattern transferring from self-assembled thin-films in sub-10 nm length scales, and 3) moving beyond passive pattern transfer applications into reactive coatings. In the first part of this thesis, we fabricate semiconducting graphene through BCP lithography. These studies introduce new ways for patterning unconventional surfaces while preserving the materials' unique electrical properties. Second, we detail an effective method to enhance etch selectivity of a new cylinder-forming self-assembled high-[chi] BCP by exposing a metal vapor precursor to selectively coordinate and react with a polymer domain, thereby creating an inorganic hard mask for pattern transfer in the sub-10 nm regime. Finally, we examine the thin-film assembly and functionalization of a reactive cylinder-forming BCP. A solvent annealing method is developed to drive microphase separation and to control the microdomain orientation in thin-film. We also demonstrate two methods of BCP functionalization: first method involves tagging the reactive domains with a primary amine commonly used for protein immobilization; second method involves the incorporation of a metal vapor precursor into the reactive domains to create alumina nanowires and nanodots are explored.

Book Selective Directed Self assembly of Coexisting Morphologies Using Block Copolymer Blends

Download or read book Selective Directed Self assembly of Coexisting Morphologies Using Block Copolymer Blends written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrasts with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

Book Self assembly of Block Copolymers by Solvent Vapor Annealing  Mechanism and Lithographic Applications

Download or read book Self assembly of Block Copolymers by Solvent Vapor Annealing Mechanism and Lithographic Applications written by Xiaodan Gu and published by . This book was released on 2014 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCP) are a unique class of polymers, which can self-assemble into ordered microdomains with sizes from 3 nm to about 50 nm making BCPs an appealing meso-scale material. In thin films, arrays of BCP microdomains with longrange lateral order can serve as ideal templates or scaffolds for patterning nano-scale functional materials and synthesizing nanostructured materials with size scales that exceed the reach of photolithography. Among many annealing methods, solvent vapor annealing (SVA) is a low-cost, highly efficient way to annihilate defects in BCP thin films and facilitates the formation of highly ordered microdomains within minutes. Directing the self-assembly of BCPs could, in principle, lead to the formation of domains with near perfect lateral ordering. The mechanism of SVA of BCPs, however, is still illunderstood, albeit it has been widely adopted in research laboratories around the world for the past decade. In the first part of this thesis, the ordering process of BCP thin films during annealing in neutral solvents was investigated mainly by in situ synchrotron X-ray scattering. Briefly, the solvent molecules impart mobility to the BCP and enable a marked improvement in the lateral ordering of the BCP microdomains. Both, BCP concentration in the swollen film and the rate of solvent removal play a key role in obtaining films with well-ordered microdomains. The amount of swelling in a BCP thin film during SVA depends on the chemical nature of the blocks, the quality of the solvent, and the molecular weight of the BCP. A high degree of swelling - still low enough to prevent solvent-induced mixing (disordering) of BCP microdomains, - provides a high chain mobility, and thus results in the formation of arrays of ordered microdomains with large grain sizes after SVA in neutral solvents. The rate of solvent removal is another critical parameter for obtaining long-range lateral order in BCP thin films after SVA in neutral solvents. While in the swollen state ordered structures form with exceptional order, removal of the solvent results in a deterioration of order due to the confinement imposed to a BCP in a thin film by the rigid silicon substrate. It was found, however, that an instantaneous solvent removal can minimize disordering to preserve the order formed in the swollen state. Self-assembled BCP microdomains also serve as ideal template to pattern other materials with exceptional lateral resolution. In this thesis, two examples of BCP lithography was also demonstrated. A reconstruction process was used to enhance the etch contrast between two organic blocks. In one example, a BCP pattern was transferred to a silicon substrate to form high aspect ratio, 5:1, sub-10nm silicon lines or holes with high fidelity. While in a second example, I demonstrated the fabrication of silicon oxide dots with an areal density as high as 2 Tera dots per inch2 by BCP templates, which has the potential to serve as etch mask for bit pattern media applications.

Book RAFT Polymerization  2 Volume Set

Download or read book RAFT Polymerization 2 Volume Set written by Graeme Moad and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 1283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore this one-stop resource for reversible addition-fragmentation chain transfer polymerization from a leading voice in chemistry RAFT Polymerization: Methods, Synthesis and Applications delivers a comprehensive and insightful analysis of reversible addition-fragmentation chain transfer polymerization (RAFT) and its applications to fields as diverse as material science, industrial chemistry, and medicine. This one-stop resource offers readers a detailed synopsis of the current state of RAFT polymerization. This text will inspire further research and continue the drive to an ever-increasing range of applications by synthesizing and explaining the more central existing literature on RAFT polymerization. It contains a beginner’s guide on how to do a RAFT polymerization before moving on to much more advanced techniques and concepts, like the kinetics and mechanisms of the RAFT process. The distinguished editors have also included resources covering the four major classes of RAFT agents and recent developments in processes for initiating RAFT polymerization. Readers will also benefit from the inclusion of: A thorough introduction to the mechanisms, theory, and mathematical modeling of RAFT Explorations of RAFT agent design and synthesis, dithioesters, dithiobenzoates, trithiocarbonates, xanthates, dithiocarbamates, macromonomer RAFT, and RAFT copolymerization Discussions of a variety of RAFT architectures, including multiblocks, combs, hyperbranched polymers, and stars Treatments of end group transformation, cationic RAFT, high-throughput RAFT, and RAFT in continuous flow An examination of sequence defined polymers by RAFT Perfect for organic chemists, polymer chemists, and materials scientists, RAFT Polymerization: Methods, Synthesis and Applications will also earn a place in the libraries of chemical engineers seeking a one-stop reference for this method of controlled radical polymerization with a wide range of applications in multiple areas.