EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Biology II

    Book Details:
  • Author : James D. Murray
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-15
  • ISBN : 0387952284
  • Pages : 834 pages

Download or read book Mathematical Biology II written by James D. Murray and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Book IPython Interactive Computing and Visualization Cookbook

Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Book Nonlinear Reaction Diffusion Systems

Download or read book Nonlinear Reaction Diffusion Systems written by Roman Cherniha and published by Springer. This book was released on 2017-09-18 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception, parts of the book can also be used in master’s level mathematical biology courses.

Book Physics Of Emergence And Organization

Download or read book Physics Of Emergence And Organization written by Ignazio Licata and published by World Scientific. This book was released on 2008-06-09 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a state-of-the-art review on the Physics of Emergence. The challenge of complexity is to focus on the description levels of the observer in context-dependent situations. Emergence is not only an heuristic approach to complexity, but it also urges us to face a much deeper question — what do we think is fundamental in the physical world?This volume provides significant and pioneering contributions based on rigorous physical and mathematical approaches — with particular reference to the syntax of Quantum Physics and Quantum Field Theory — dealing with the bridge-laws and their limitations between Physics and Biology, without failing to discuss the involved epistemological features.Physics of Emergence and Organization is an interdisciplinary source of reference for students and experts whose interests cross over to complexity issues.

Book Directions In Condensed Matter Physics  Memorial Volume In Honor Of Shang keng Ma

Download or read book Directions In Condensed Matter Physics Memorial Volume In Honor Of Shang keng Ma written by Geoffrey Grinstein and published by World Scientific. This book was released on 1986-08-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.

Book Pattern Formations and Oscillatory Phenomena

Download or read book Pattern Formations and Oscillatory Phenomena written by Shuichi Kinoshita and published by Elsevier Inc. Chapters. This book was released on 2013-05-09 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present examples of familiar phenomena found in nonequilibrium systems, including oscillatory phenomena, order-formation processes, and pattern formation. In particular, we introduce commonly used mathematical methods to analyze their characteristics. First, we present oscillations described by the Lotka–Volterra and van der Pol equations, the Brusselator, the Oregonator, and relaxation oscillations as examples of oscillatory phenomena. Second, we investigate the order-formation process in colloidal crystals and present an experimental observation of 2D array formation. Third, we demonstrate pattern formation in crystals on the basis of the Mullins–Sekerka instability, and in chemical and biological systems on the basis of the Turing instability. In particular, we describe the optical properties and development of sophisticated structural patterns that directly interact with light. Finally, we briefly describe a theoretical phase-transition analogy that might clarify the concept of order formation in nonequilibrium systems.

Book Mathematical Aspects of Pattern Formation in Biological Systems

Download or read book Mathematical Aspects of Pattern Formation in Biological Systems written by Juncheng Wei and published by Springer Science & Business Media. This book was released on 2013-09-18 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models. The approach adopted in the monograph is based on the following paradigms: • Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones • Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions • Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems. Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology.

Book Cellular Automaton Modeling of Biological Pattern Formation

Download or read book Cellular Automaton Modeling of Biological Pattern Formation written by Andreas Deutsch and published by Birkhäuser. This book was released on 2018-03-09 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In the final chapter, the authors critically discuss possibilities and limitations of the cellular automaton approach in modeling various biological applications, along with future research directions. Suggestions for research projects are provided throughout the book to encourage additional engagement with the material, and an accompanying simulator is available for readers to perform their own simulations on several of the models covered in the text. QR codes are included within the text for easy access to the simulator. With its accessible presentation and interdisciplinary approach, Cellular Automaton Modeling of Biological Pattern Formation is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing. It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION “An ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” —Mathematical Reviews

Book Integral Methods in Science and Engineering

Download or read book Integral Methods in Science and Engineering written by Barbara S Bertram and published by CRC Press. This book was released on 2019-05-20 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Book Pattern Formation and Dynamics in Nonequilibrium Systems

Download or read book Pattern Formation and Dynamics in Nonequilibrium Systems written by Michael Cross and published by Cambridge University Press. This book was released on 2009-07-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.

Book Periodic Precipitation

    Book Details:
  • Author : H. K. Henisch
  • Publisher : Elsevier
  • Release : 2014-06-28
  • ISBN : 1483296806
  • Pages : 137 pages

Download or read book Periodic Precipitation written by H. K. Henisch and published by Elsevier. This book was released on 2014-06-28 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing illustrations, worked examples, graphs and tables, this book deals with periodic precipitation (also known as Liesegang Ring formation) in terms of mathematical models and their logical consequences, and is entirely concerned with microcomputer analysis and software development. Three distinctive periodic precipitation mechanisms are included: binary diffusion-reaction; solubility modulation, and competitive particle growth. The book provides didactic illustrations of a valuable investigational procedure, in the form of hypothetical experimentation by microcomputer. The development of appropriate software is described and the resulting programs are available separately on disk. The software (for IBM compatible microcomputers; 5 1/4 and 3 1/2 inch disks available) will be sold separately by, The Carnation Press, PO Box 101, State College, PA 16804, USA.

Book 2019 20 MATRIX Annals

Download or read book 2019 20 MATRIX Annals written by Jan de Gier and published by Springer Nature. This book was released on 2021-02-10 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.

Book Models of Biological Pattern Formation

Download or read book Models of Biological Pattern Formation written by Hans Meinhardt and published by . This book was released on 1982 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Modelling of Reaction   Diffusion Processes

Download or read book Stochastic Modelling of Reaction Diffusion Processes written by Radek Erban and published by Cambridge University Press. This book was released on 2020-01-30 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.

Book Pattern formation in biology

Download or read book Pattern formation in biology written by Luis Diambra and published by Frontiers Media SA. This book was released on 2023-06-07 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spatial Dynamics and Pattern Formation in Biological Populations

Download or read book Spatial Dynamics and Pattern Formation in Biological Populations written by Ranjit Kumar Upadhyay and published by CRC Press. This book was released on 2021-02-24 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Book Mathematical Biology

    Book Details:
  • Author : James D. Murray
  • Publisher : Springer Science & Business Media
  • Release : 2007-06-12
  • ISBN : 0387224378
  • Pages : 551 pages

Download or read book Mathematical Biology written by James D. Murray and published by Springer Science & Business Media. This book was released on 2007-06-12 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.