EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Schwarz Lemma

    Book Details:
  • Author : Sean Dineen
  • Publisher : Courier Dover Publications
  • Release : 2016-04-06
  • ISBN : 0486810976
  • Pages : 260 pages

Download or read book The Schwarz Lemma written by Sean Dineen and published by Courier Dover Publications. This book was released on 2016-04-06 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students, this self-contained overview covers the classical Schwarz lemma, Poincaré distance on the unit disc, hyperbolic manifolds, holomorphic curvature, and the analytic Radon-Nikodym property. 1989 edition.

Book The Schwarz Lemma

    Book Details:
  • Author : Sean Dineen
  • Publisher : Courier Dover Publications
  • Release : 2016-04-21
  • ISBN : 0486801209
  • Pages : 260 pages

Download or read book The Schwarz Lemma written by Sean Dineen and published by Courier Dover Publications. This book was released on 2016-04-21 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: Oxford: Clarendon Press, 1989.

Book Schwarz Pick Type Inequalities

Download or read book Schwarz Pick Type Inequalities written by Farit G. Avkhadiev and published by Springer Science & Business Media. This book was released on 2009-04-05 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a unified representation of generalizations of the Schwarz Lemma. It examines key coefficient theorems of the last century and explains the connection between coefficient estimates and characteristics of the hyperbolic geometry in a domain.

Book Function Theory of Several Complex Variables

Download or read book Function Theory of Several Complex Variables written by Steven George Krantz and published by American Mathematical Soc.. This book was released on 2001 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.

Book Complex Analysis

    Book Details:
  • Author : Theodore W. Gamelin
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-01
  • ISBN : 0387216073
  • Pages : 508 pages

Download or read book Complex Analysis written by Theodore W. Gamelin and published by Springer Science & Business Media. This book was released on 2013-11-01 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.

Book Schwarz s Lemma from a Differential Geometric Viewpoint

Download or read book Schwarz s Lemma from a Differential Geometric Viewpoint written by Kang-Tae Kim and published by World Scientific. This book was released on 2011 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject matter in this volume is Schwarz's lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's lemma and provides the necessary information while making the whole volume as concise as ever.

Book The Cauchy Schwarz Master Class

Download or read book The Cauchy Schwarz Master Class written by J. Michael Steele and published by Cambridge University Press. This book was released on 2004-04-26 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lively, problem-oriented text, first published in 2004, is designed to coach readers toward mastery of the most fundamental mathematical inequalities. With the Cauchy-Schwarz inequality as the initial guide, the reader is led through a sequence of fascinating problems whose solutions are presented as they might have been discovered - either by one of history's famous mathematicians or by the reader. The problems emphasize beauty and surprise, but along the way readers will find systematic coverage of the geometry of squares, convexity, the ladder of power means, majorization, Schur convexity, exponential sums, and the inequalities of Hölder, Hilbert, and Hardy. The text is accessible to anyone who knows calculus and who cares about solving problems. It is well suited to self-study, directed study, or as a supplement to courses in analysis, probability, and combinatorics.

Book Univalent Functions

    Book Details:
  • Author : P. L. Duren
  • Publisher : Springer Science & Business Media
  • Release : 2001-07-02
  • ISBN : 9780387907956
  • Pages : 416 pages

Download or read book Univalent Functions written by P. L. Duren and published by Springer Science & Business Media. This book was released on 2001-07-02 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Clifford Analysis and Its Applications

Download or read book Clifford Analysis and Its Applications written by F. Brackx and published by Springer Science & Business Media. This book was released on 2001-07-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.

Book Function Theory of One Complex Variable

Download or read book Function Theory of One Complex Variable written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 2006 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.

Book Geometric Function Theory in One and Higher Dimensions

Download or read book Geometric Function Theory in One and Higher Dimensions written by Ian Graham and published by CRC Press. This book was released on 2003-03-18 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the in

Book A Course in Complex Analysis

Download or read book A Course in Complex Analysis written by Saeed Zakeri and published by Princeton University Press. This book was released on 2021-11-02 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This textbook is intended for a year-long graduate course on complex analysis, a branch of mathematical analysis that has broad applications, particularly in physics, engineering, and applied mathematics. Based on nearly twenty years of classroom lectures, the book is accessible enough for independent study, while the rigorous approach will appeal to more experienced readers and scholars, propelling further research in this field. While other graduate-level complex analysis textbooks do exist, Zakeri takes a distinctive approach by highlighting the geometric properties and topological underpinnings of this area. Zakeri includes more than three hundred and fifty problems, with problem sets at the end of each chapter, along with additional solved examples. Background knowledge of undergraduate analysis and topology is needed, but the thoughtful examples are accessible to beginning graduate students and advanced undergraduates. At the same time, the book has sufficient depth for advanced readers to enhance their own research. The textbook is well-written, clearly illustrated, and peppered with historical information, making it approachable without sacrificing rigor. It is poised to be a valuable textbook for graduate students, filling a needed gap by way of its level and unique approach"--

Book Lectures on Riemann Surfaces

Download or read book Lectures on Riemann Surfaces written by Otto Forster and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS

Book Harmonic Function Theory

    Book Details:
  • Author : Sheldon Axler
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1475781377
  • Pages : 266 pages

Download or read book Harmonic Function Theory written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.

Book Complex Analysis

    Book Details:
  • Author : Elias M. Stein
  • Publisher : Princeton University Press
  • Release : 2010-04-22
  • ISBN : 1400831156
  • Pages : 398 pages

Download or read book Complex Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2010-04-22 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Book Conformal Mapping

    Book Details:
  • Author : Zeev Nehari
  • Publisher : Courier Corporation
  • Release : 2012-05-23
  • ISBN : 0486145034
  • Pages : 418 pages

Download or read book Conformal Mapping written by Zeev Nehari and published by Courier Corporation. This book was released on 2012-05-23 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conformal mapping is a field in which pure and applied mathematics are both involved. This book tries to bridge the gulf that many times divides these two disciplines by combining the theoretical and practical approaches to the subject. It will interest the pure mathematician, engineer, physicist, and applied mathematician. The potential theory and complex function theory necessary for a full treatment of conformal mapping are developed in the first four chapters, so the reader needs no other text on complex variables. These chapters cover harmonic functions, analytic functions, the complex integral calculus, and families of analytic functions. Included here are discussions of Green's formula, the Poisson formula, the Cauchy-Riemann equations, Cauchy's theorem, the Laurent series, and the Residue theorem. The final three chapters consider in detail conformal mapping of simply-connected domains, mapping properties of special functions, and conformal mapping of multiply-connected domains. The coverage here includes such topics as the Schwarz lemma, the Riemann mapping theorem, the Schwarz-Christoffel formula, univalent functions, the kernel function, elliptic functions, univalent functions, the kernel function, elliptic functions, the Schwarzian s-functions, canonical domains, and bounded functions. There are many problems and exercises, making the book useful for both self-study and classroom use. The author, former professor of mathematics at Carnegie-Mellon University, has designed the book as a semester's introduction to functions of a complex variable followed by a one-year graduate course in conformal mapping. The material is presented simply and clearly, and the only prerequisite is a good working knowledge of advanced calculus.

Book A Second Course in Complex Analysis

Download or read book A Second Course in Complex Analysis written by William A. Veech and published by Courier Corporation. This book was released on 2014-08-04 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear, self-contained treatment of important areas in complex analysis, this text is geared toward upper-level undergraduates and graduate students. The material is largely classical, with particular emphasis on the geometry of complex mappings. Author William A. Veech, the Edgar Odell Lovett Professor of Mathematics at Rice University, presents the Riemann mapping theorem as a special case of an existence theorem for universal covering surfaces. His focus on the geometry of complex mappings makes frequent use of Schwarz's lemma. He constructs the universal covering surface of an arbitrary planar region and employs the modular function to develop the theorems of Landau, Schottky, Montel, and Picard as consequences of the existence of certain coverings. Concluding chapters explore Hadamard product theorem and prime number theorem.