EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Runge Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV  the Multidimensional Case

Download or read book The Runge Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV the Multidimensional Case written by University of Minnesota. Institute for Mathematics and Its Applications and published by . This book was released on 1989 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Download or read book Modeling Shallow Water Flows Using the Discontinuous Galerkin Method written by Abdul A. Khan and published by CRC Press. This book was released on 2014-03-03 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fields of science and engineering, its use for hydraulics has so far been limited to simple cases. The book compares numerical results with laboratory experiments and field data, and includes a set of tests that can be used for a wide range of applications. Provides step-by-step implementation details Presents the different forms in which the shallow water flow equations can be written Places emphasis on the details and modifications required to apply the scheme to real-world flow problems This text enables readers to readily understand and develop an efficient computer simulation model that can be used to model flow, contaminant transport, and other aspects in rivers and coastal environments. It is an ideal resource for practicing environmental engineers and researchers in the area of computational hydraulics and fluid dynamics, and graduate students in computational hydraulics.

Book Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations

Download or read book Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations written by Xiaobing Feng and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.

Book Numerical Methods for Conservation Laws

Download or read book Numerical Methods for Conservation Laws written by Jan S. Hesthaven and published by SIAM. This book was released on 2018-01-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.

Book TVB Runge Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II  General Framework

Download or read book TVB Runge Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II General Framework written by University of Minnesota. Institute for Mathematics and Its Applications and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Order Methods for Computational Physics

Download or read book High Order Methods for Computational Physics written by Timothy J. Barth and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.

Book hp Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

Download or read book hp Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes written by Andrea Cangiani and published by Springer. This book was released on 2017-11-27 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.

Book Nonlinear Analysis   1989 Conference

Download or read book Nonlinear Analysis 1989 Conference written by Liu Fon-che and published by #N/A. This book was released on 1991-01-30 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by T. J. Chung and published by Cambridge University Press. This book was released on 2002-02-07 with total page 1040 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, computational fluid dynamics (CFD) techniques are being used to study and solve complex fluid flow and heat transfer problems. This comprehensive book ranges from elementary concepts for the beginner to state-of-the-art CFD for the practitioner. It begins with CFD preliminaries, in which the basic principles of finite difference (FD), finite element (FE), and finite volume (FV) methods are discussed and illustrated through examples, with step-by-step hand calculations. Then, FD and FE methods respectively are covered, including both historical developments and recent contributions. The next section is devoted to structured and unstructured grids, adaptive methods, computing techniques, and parallel processing. Finally, the author describes a variety of practical applications to problems in turbulence, reacting flows and combustion, acoustics, combined mode radiative heat transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows. Students and practitioners - particularly in mechanical, aerospace, chemical, and civil engineering - will use this authoritative text to learn about and apply numerical techniques to the solution of fluid dynamics problems.

Book Numerical Approximation of Hyperbolic Systems of Conservation Laws

Download or read book Numerical Approximation of Hyperbolic Systems of Conservation Laws written by Edwige Godlewski and published by Springer Nature. This book was released on 2021-08-28 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.

Book Numerical Analysis 1997

Download or read book Numerical Analysis 1997 written by D.F. Griffiths and published by CRC Press. This book was released on 1997-12-05 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book forms a valuable guide to the direction in which current numerical analysis research is heading. It will be of particular interest to graduate students and researchers concerned with the theoretical and practical issues associated with scientific computation. The main topics include ordinary and partial differential equations, fluid flow, optimization, linear algebra, and approximation theory. Two recurring themes are the need for adaptive and structure preserving numerical methods. The work presented here has a list of direct applications that include colliding black holes, molecular dynamics, blow-up problems, and card shuffling.

Book Modeling  Mesh Generation  and Adaptive Numerical Methods for Partial Differential Equations

Download or read book Modeling Mesh Generation and Adaptive Numerical Methods for Partial Differential Equations written by Ivo Babuska and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: With considerations such as complex-dimensional geometries and nonlinearity, the computational solution of partial differential systems has become so involved that it is important to automate decisions that have been normally left to the individual. This book covers such decisions: 1) mesh generation with links to the software generating the domain geometry, 2) solution accuracy and reliability with mesh selection linked to solution generation. This book is suited for mathematicians, computer scientists and engineers and is intended to encourage interdisciplinary interaction between the diverse groups.

Book Resource Recovery  Confinement  and Remediation of Environmental Hazards

Download or read book Resource Recovery Confinement and Remediation of Environmental Hazards written by John Chadam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications RESOURCE RECOVERY, CONFINEMENT, AND REMEDIATION OF ENVIRONMENTAL HAZARDS contains papers presented at two successful one-week workshops: Confine ment and Remediation of Environmental Hazards held on January 15-19, 2000 and Resource Recovery, February 9-13, 2000. Both workshops were integral parts of the IMA annual program on Mathematics in Reactive Flow and Transport Phenomena, 1999-2000. We would like to thank John Chadam (University of Pittsburgh), Al Cunningham (Montana State Uni versity), Richard E. Ewing (Texas A&M University), Peter Ortoleva (In diana University), and Mary Fanett Wheeler (TICAM, The University of Texas at Austin) for their excellent work as organizers of the meetings and for editing the proceedings. We take this opportunity to thank the National Science Foundation for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE Advances in resource recovery, and confinement/remediation of envi ronmental hazards requires a coordinated, interdisciplinary effort involving mathematicians, scientists and engineers. The intent of this collection of papers is to summarize recent theoretical, computational, and experimen tal advances in the theory of phenomena in porous media, with the intent to identify similarities and differences concerning applications related to both resource recovery and confinement and remediation of environmental hazards.

Book One dimensional Hyperbolic Conservation Laws And Their Applications

Download or read book One dimensional Hyperbolic Conservation Laws And Their Applications written by Jean-michel Coron and published by World Scientific. This book was released on 2019-01-08 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.

Book Mathematical Aspects of Discontinuous Galerkin Methods

Download or read book Mathematical Aspects of Discontinuous Galerkin Methods written by Daniele Antonio Di Pietro and published by Springer Science & Business Media. This book was released on 2011-11-03 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.

Book Approximation Algorithms for Complex Systems

Download or read book Approximation Algorithms for Complex Systems written by Emmanuil H Georgoulis and published by Springer Science & Business Media. This book was released on 2011-01-04 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.