EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Robust Multigrid Technique

Download or read book The Robust Multigrid Technique written by Sergey I. Martynenko and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-09-25 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics

Book Towards Robust Algebraic Multigrid Methods for Nonsymmetric Problems

Download or read book Towards Robust Algebraic Multigrid Methods for Nonsymmetric Problems written by James Lottes and published by Springer. This book was released on 2017-03-24 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a rigorous, abstract analysis of multigrid methods for positive nonsymmetric problems, particularly suited to algebraic multigrid, with a completely new approach to nonsymmetry which is based on a new concept of absolute value for nonsymmetric operators. Multigrid, and in particular algebraic multigrid, has become an indispensable tool for the solution of discretizations of partial differential equations. While used in both the symmetric and nonsymmetric cases, the theory for the nonsymmetric case has lagged substantially behind that for the symmetric case. This thesis closes some of this gap, presenting a major and highly original contribution to an important problem of computational science. The new approach to nonsymmetry will be of interest to anyone working on the analysis of discretizations of nonsymmetric operators, even outside the context of multigrid. The presentation of the convergence theory may interest even those only concerned with the symmetric case, as it sheds some new light on and extends existing results.

Book Multi Grid Methods and Applications

Download or read book Multi Grid Methods and Applications written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-grid methods are the most efficient tools for solving elliptic boundary value problems. The reader finds here an elementary introduction to multi-grid algorithms as well as a comprehensive convergence analysis. One section describes special applications (convection-diffusion equations, singular perturbation problems, eigenvalue problems, etc.). The book also contains a complete presentation of the multi-grid method of the second kind, which has important applications to integral equations (e.g. the "panel method") and to numerous other problems. Readers with a practical interest in multi-grid methods will benefit from this book as well as readers with a more theoretical interest.

Book A Multigrid Tutorial

Download or read book A Multigrid Tutorial written by William L. Briggs and published by SIAM. This book was released on 2000-07-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.

Book Multigrid Techniques

Download or read book Multigrid Techniques written by Achi Brandt and published by SIAM. This book was released on 2011-01-01 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text presents the best practices of developing multigrid solvers for large-scale computational problems in science and engineering. By representing a problem at multiple scales and employing suitable interscale interactions, multigrid avoids slowdown due to stiffness and reduces the computational cost of classical algorithms by orders of magnitude. Starting from simple examples, this book guides the reader through practical stages for developing reliable multigrid solvers, methodically supported by accurate performance predictors. The revised edition presents discretization and fast solution of linear and nonlinear partial differential systems; treatment of boundary conditions, global constraints and singularities; grid adaptation, high-order approximations, and system design optimization; applications to fluid dynamics, from simple models to advanced systems; new quantitative performance predictors, a MATLAB sample code, and more. Readers will also gain access to the Multigrid Guide 2.0 Web site, where updates and new developments will be continually posted, including a chapter on Algebraic Multigrid.

Book Multigrid Finite Element Methods for Electromagnetic Field Modeling

Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-03-10 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Book Robust Multi Grid Methods

Download or read book Robust Multi Grid Methods written by Wolfgang Hackbusch and published by Springer-Verlag. This book was released on 2013-07-01 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Multigrid Methods for the Steady and Unsteady Incompressible Navier Stokes Equations in General Coordinates

Download or read book Robust Multigrid Methods for the Steady and Unsteady Incompressible Navier Stokes Equations in General Coordinates written by Cornelis Willebrordus Oosterlee (Mathematicien.) and published by . This book was released on 1993 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Multigrid Algorithms for the Incompressible Navier Stokes Equations

Download or read book Robust Multigrid Algorithms for the Incompressible Navier Stokes Equations written by Ruben S. Montero and published by . This book was released on 2000 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anisotropies occur naturally in CFD where the simulation of small scale physical phenomena, such as boundary layers at high Reynolds numbers, causes the grid to be highly stretched leading to a slow down in convergence of multigrid methods. Several approaches aimed at making multigrid a robust solver have been proposed and analyzed in literature using the scalar diffusion equation. However, they have been rarely applied to solving more complicated models, like the incompressible Navier-Stokes equations. This paper contains the first published numerical results of the behavior of two popular robust multigrid approaches (alternating-plane smoothers combined with standard coarsening and plane implicit smoothers combined with semi-coarsening) for solving the 3-D incompressible Navier-Stokes equations in the simulation of the driven cavity and a boundary layer over a flat plate on a stretched grid. The discrete operator is obtained using a staggered-grid arrangement of variables with a finite volume technique and second-order accuracy is achieved using defect correction within the multigrid cycle. Grid size, grid stretching and Reynolds number are the factors considered in evaluating the robustness of the multigrid methods. Both approaches yield large increases in convergence rates over cell-implicit smoothers on stretched grids. The combination of plane implicit smoothers and semi-coarsening was found to be fully robust in the fiat plate simulation up to Reynolds numbers 10(exp 6) and the best alternative in the driven cavity simulation for Reynolds numbers above 10(exp 3). The alternating-plane approach exhibits a better behavior for lower Reynolds numbers (below to 10(exp 3) in the driven cavity simulation. A parallel variant of the smoother, tri-plane ordering, presents a good trade-off between convergence and parallel properties.

Book A Robust and Efficient Multigrid Method

Download or read book A Robust and Efficient Multigrid Method written by P. Wesseling and published by . This book was released on 1982 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Numerical Geodynamic Modelling

Download or read book Introduction to Numerical Geodynamic Modelling written by Taras Gerya and published by Cambridge University Press. This book was released on 2010 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.

Book A Robust Multigrid Method for a Discretization of the Incompressible Navier Stokes Equations in General Coordinates

Download or read book A Robust Multigrid Method for a Discretization of the Incompressible Navier Stokes Equations in General Coordinates written by Cornelis Willebrordus Oosterlee and published by . This book was released on 1992 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Multigrid Methods for the Steady and Unsteady Incompressible Navier Stokes Equations in General Coordinates

Download or read book Robust Multigrid Methods for the Steady and Unsteady Incompressible Navier Stokes Equations in General Coordinates written by Cornelis W. Oosterlee and published by . This book was released on 1993 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multigrid Methods V

    Book Details:
  • Author : Wolfgang Hackbusch
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642587348
  • Pages : 344 pages

Download or read book Multigrid Methods V written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection from the papers presented at the Fifth European Multigrid Conference, held in Stuttgart, October 1996. All contributions were carefully refereed. The conference was organized by the Institute for Computer Applications (ICA) of the University of Stuttgart, in cooperation with the GAMM Committee for Scientific Computing, SFB 359 and 404 and the research network WiR Ba-Wü. The list of topics contained lectures on Multigrid Methods: robustness, adaptivity, wavelets, parallelization, application in computational fluid dynamics, porous media flow, optimisation and computational mechanics. A considerable part of the talks focused on algebraic multigrid methods.

Book Matrix Based Multigrid

    Book Details:
  • Author : Yair Shapira
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 1475737262
  • Pages : 225 pages

Download or read book Matrix Based Multigrid written by Yair Shapira and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many important problems in applied science and engineering, such as the Navier Stokes equations in fluid dynamics, the primitive equations in global climate mod eling, the strain-stress equations in mechanics, the neutron diffusion equations in nuclear engineering, and MRIICT medical simulations, involve complicated sys tems of nonlinear partial differential equations. When discretized, such problems produce extremely large, nonlinear systems of equations, whose numerical solution is prohibitively costly in terms of time and storage. High-performance (parallel) computers and efficient (parallelizable) algorithms are clearly necessary. Three classical approaches to the solution of such systems are: Newton's method, Preconditioned Conjugate Gradients (and related Krylov-space acceleration tech niques), and multigrid methods. The first two approaches require the solution of large sparse linear systems at every iteration, which are themselves often solved by multigrid methods. Developing robust and efficient multigrid algorithms is thus of great importance. The original multigrid algorithm was developed for the Poisson equation in a square, discretized by finite differences on a uniform grid. For this model problem, multigrid exhibits extremely rapid convergence, and actually solves the problem in the minimal possible time. The original algorithm uses rediscretization of the partial differential equation (POE) on each grid in the hierarchy of coarse grids that are used. However, this approach would not work for more complicated problems, such as problems on complicated domains and nonuniform grids, problems with variable coefficients, and non symmetric and indefinite equations. In these cases, matrix-based multi grid methods are in order.

Book On Robust Multigrid Methods for Non smooth Variational Problems

Download or read book On Robust Multigrid Methods for Non smooth Variational Problems written by Ralf Kornhuber and published by . This book was released on 1996 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "We consider the fast solution of large, piecewise smooth minimization problems as resulting from the approximation of elliptic free boundary problems. The most delicate question in constructing a multigrid method for a nonlinear, non-smooth problem is how to represent the nonlinearity on the coarse grids. This process usually involves some kind of linearization. The basic idea of monotone multigrid methods to be presented here is first to select a neighborhood of the actual smoothed iterate in which a linearization is possible and then to constrain the coarse grid correction to this neighborhood. Such a local linearization allows to control the local corrections at each coarse grid node in such a way that the energy functional is monotonically decreasing. This approach leads to globally convergent schemes which are robust with respect to local singularities of the given problem. The numerical performance is illustrated by approximating the well-known Barenblatt solution of the porous medium equation."

Book Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

Download or read book Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies written by Ignacio M. Llorente and published by . This book was released on 1998 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems."