EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sensory Cue Integration

    Book Details:
  • Author : Julia Trommershauser
  • Publisher : Oxford University Press
  • Release : 2011-09-21
  • ISBN : 019987476X
  • Pages : 461 pages

Download or read book Sensory Cue Integration written by Julia Trommershauser and published by Oxford University Press. This book was released on 2011-09-21 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with sensory cue integration both within and between sensory modalities, and focuses on the emerging way of thinking about cue combination in terms of uncertainty. These probabilistic approaches derive from the realization that our sensors are noisy and moreover are often affected by ambiguity. For example, mechanoreceptor outputs are variable and they cannot distinguish if a perceived force is caused by the weight of an object or by force we are producing ourselves. The probabilistic approaches elaborated in this book aim at formalizing the uncertainty of cues. They describe cue combination as the nervous system's attempt to minimize uncertainty in its estimates and to choose successful actions. Some computational approaches described in the chapters of this book are concerned with the application of such statistical ideas to real-world cue-combination problems. Others ask how uncertainty may be represented in the nervous system and used for cue combination. Importantly, across behavioral, electrophysiological and theoretical approaches, Bayesian statistics is emerging as a common language in which cue-combination problems can be expressed.

Book Analysis in Nutrition Research

Download or read book Analysis in Nutrition Research written by George Pounis and published by Academic Press. This book was released on 2018-10-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis in Nutrition Research: Principles of Statistical Methodology and Interpretation of the Results describes, in a comprehensive manner, the methodologies of quantitative analysis of data originating specifically from nutrition studies. The book summarizes various study designs in nutrition research, research hypotheses, the proper management of dietary data, and analytical methodologies, with a specific focus on how to interpret the results of any given study. In addition, it provides a comprehensive overview of the methodologies used in study design and the management and analysis of collected data, paying particular attention to all of the available, modern methodologies and techniques. Users will find an overview of the recent challenges and debates in the field of nutrition research that will define major research hypotheses for research in the next ten years. Nutrition scientists, researchers and undergraduate and postgraduate students will benefit from this thorough publication on the topic. - Provides a comprehensive presentation of the various study designs applied in nutrition research - Contains a parallel description of statistical methodologies used for each study design - Presents data management methodologies used specifically in nutrition research - Describes methodologies using both a theoretical and applied approach - Illustrates modern techniques in dietary pattern analysis - Summarizes current topics in the field of nutrition research that will define major research hypotheses for research in the next ten years

Book Bayes  Rule

    Book Details:
  • Author : James V. Stone
  • Publisher : Sebtel Press
  • Release : 2013-06-01
  • ISBN : 0956372848
  • Pages : 170 pages

Download or read book Bayes Rule written by James V. Stone and published by Sebtel Press. This book was released on 2013-06-01 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this richly illustrated book, a range of accessible examples are used to show how Bayes' rule is actually a natural consequence of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for the novice who wishes to become familiar with the basic principles of Bayesian analysis.

Book Bayesian Decision Analysis

Download or read book Bayesian Decision Analysis written by Jim Q. Smith and published by Cambridge University Press. This book was released on 2010-09-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian decision analysis supports principled decision making in complex domains. This textbook takes the reader from a formal analysis of simple decision problems to a careful analysis of the sometimes very complex and data rich structures confronted by practitioners. The book contains basic material on subjective probability theory and multi-attribute utility theory, event and decision trees, Bayesian networks, influence diagrams and causal Bayesian networks. The author demonstrates when and how the theory can be successfully applied to a given decision problem, how data can be sampled and expert judgements elicited to support this analysis, and when and how an effective Bayesian decision analysis can be implemented. Evolving from a third-year undergraduate course taught by the author over many years, all of the material in this book will be accessible to a student who has completed introductory courses in probability and mathematical statistics.

Book Decision Theory with a Human Face

Download or read book Decision Theory with a Human Face written by Richard Bradley and published by Cambridge University Press. This book was released on 2017-10-26 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores how decision-makers can manage uncertainty that varies in both kind and severity by extending and supplementing Bayesian decision theory.

Book Decision Making Under Uncertainty

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Book Risk Assessment and Decision Analysis with Bayesian Networks

Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2012-11-07 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.

Book Bayesian Brain

Download or read book Bayesian Brain written by Kenji Doya and published by MIT Press. This book was released on 2007 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.

Book Perception as Bayesian Inference

Download or read book Perception as Bayesian Inference written by David C. Knill and published by Cambridge University Press. This book was released on 1996-09-13 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian probability theory has emerged not only as a powerful tool for building computational theories of vision, but also as a general paradigm for studying human visual perception. This 1996 book provides an introduction to and critical analysis of the Bayesian paradigm. Leading researchers in computer vision and experimental vision science describe general theoretical frameworks for modelling vision, detailed applications to specific problems and implications for experimental studies of human perception. The book provides a dialogue between different perspectives both within chapters, which draw on insights from experimental and computational work, and between chapters, through commentaries written by the contributors on each others' work. Students and researchers in cognitive and visual science will find much to interest them in this thought-provoking collection.

Book Frontiers of Statistical Decision Making and Bayesian Analysis

Download or read book Frontiers of Statistical Decision Making and Bayesian Analysis written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2010-07-24 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Bayesian Rationality

    Book Details:
  • Author : Mike Oaksford
  • Publisher : Oxford University Press
  • Release : 2007-02-22
  • ISBN : 0198524498
  • Pages : 342 pages

Download or read book Bayesian Rationality written by Mike Oaksford and published by Oxford University Press. This book was released on 2007-02-22 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: For almost 2,500 years, the Western concept of what is to be human has been dominated by the idea that the mind is the seat of reason - humans are, almost by definition, the rational animal. In this text a more radical suggestion for explaining these puzzling aspects of human reasoning is put forward.

Book Decision Theory as Philosophy

Download or read book Decision Theory as Philosophy written by Mark Kaplan and published by Cambridge University Press. This book was released on 1996 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kaplan presents an accessible new variant on Bayesian decision theory.

Book Handbook of Heuristics

Download or read book Handbook of Heuristics written by Rafael Martí and published by Springer. This book was released on 2017-01-16 with total page 3000 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method. GRASP (Greedy Randomized Adaptive Search Procedures) is an example of a Metaheuristic. To the layman, heuristics may be thought of as ‘rules of thumb’ but despite its imprecision, heuristics is a very rich field that refers to experience-based techniques for problem-solving, learning, and discovery. Any given solution/heuristic is not guaranteed to be optimal but heuristic methodologies are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical. The introduction to this Handbook provides an overview of the history of Heuristics along with main issues regarding the methodologies covered. This is followed by Chapters containing various examples of local searches, search strategies and Metaheuristics, leading to an analyses of Heuristics and search algorithms. The reference concludes with numerous illustrations of the highly applicable nature and implementation of Heuristics in our daily life. Each chapter of this work includes an abstract/introduction with a short description of the methodology. Key words are also necessary as part of top-matter to each chapter to enable maximum search engine optimization. Next, chapters will include discussion of the adaptation of this methodology to solve a difficult optimization problem, and experiments on a set of representative problems.

Book Bayesian Methods in Health Economics

Download or read book Bayesian Methods in Health Economics written by Gianluca Baio and published by CRC Press. This book was released on 2012-11-12 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.

Book An Introduction to Decision Theory

Download or read book An Introduction to Decision Theory written by Martin Peterson and published by Cambridge University Press. This book was released on 2017-03-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and accessible introduction to all aspects of decision theory, now with new and updated discussions and over 140 exercises.

Book Handbook of Blind Source Separation

Download or read book Handbook of Blind Source Separation written by Pierre Comon and published by Academic Press. This book was released on 2010-02-17 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications