Download or read book Property preserving Numerical Schemes For Conservation Laws written by Dmitri Kuzmin and published by World Scientific. This book was released on 2023-08-28 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-order numerical methods for hyperbolic conservation laws do not guarantee the validity of constraints that physically meaningful approximations are supposed to satisfy. The finite volume and finite element schemes summarized in this book use limiting techniques to enforce discrete maximum principles and entropy inequalities. Spurious oscillations are prevented using artificial viscosity operators and/or essentially nonoscillatory reconstructions.An introduction to classical nonlinear stabilization approaches is given in the simple context of one-dimensional finite volume discretizations. Subsequent chapters of Part I are focused on recent extensions to continuous and discontinuous Galerkin methods. Many of the algorithms presented in these chapters were developed by the authors and their collaborators. Part II gives a deeper insight into the mathematical theory of property-preserving numerical schemes. It begins with a review of the convergence theory for finite volume methods and ends with analysis of algebraic flux correction schemes for finite elements. In addition to providing ready-to-use algorithms, this text explains the design principles behind such algorithms and shows how to put theory into practice. Although the book is based on lecture notes written for an advanced graduate-level course, it is also aimed at senior researchers who develop and analyze numerical methods for hyperbolic problems.
Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Download or read book Acta Numerica 2003 Volume 12 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2003-09-15 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: An annual volume presenting substantive survey articles in numerical mathematics and scientific computing.
Download or read book SIAM Journal on Numerical Analysis written by and published by . This book was released on 2001 with total page 1156 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hyperbolic Problems Theory Numerics Applications written by Rolf Jeltsch and published by Birkhäuser. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Numerical Methods for Conservation Laws of Mixed Type written by Huiing Gau and published by . This book was released on 1995 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hyperbolic Problems written by Michael Fey and published by Springer Science & Business Media. This book was released on 1999 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Numerical Approximation of Hyperbolic Systems of Conservation Laws written by Edwige Godlewski and published by Springer Nature. This book was released on 2021-08-28 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
Download or read book Numerical Methods for Conservation Laws written by Jan S. Hesthaven and published by SIAM. This book was released on 2018-01-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Download or read book Free Boundary Problems written by Ioannis Athanasopoulos and published by Routledge. This book was released on 2019-11-11 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free boundary problems arise in an enormous number of situations in nature and technology. They hold a strategic position in pure and applied sciences and thus have been the focus of considerable research over the last three decades. Free Boundary Problems: Theory and Applications presents the work and results of experts at the forefront of current research in mathematics, material sciences, chemical engineering, biology, and physics. It contains the plenary lectures and contributed papers of the 1997 International Interdisciplinary Congress proceedings held in Crete. The main topics addressed include free boundary problems in fluid and solid mechanics, combustion, the theory of filtration, and glaciology. Contributors also discuss material science modeling, recent mathematical developments, and numerical analysis advances within their presentations of more specific topics, such as singularities of interfaces, cusp cavitation and fracture, capillary fluid dynamics of film coating, dynamics of surface growth, phase transition kinetics, and phase field models. With the implications of free boundary problems so far reaching, it becomes important for researchers from all of these fields to stay abreast of new developments. Free Boundary Problems: Theory and Applications provides the opportunity to do just that, presenting recent advances from more than 50 researchers at the frontiers of science, mathematics, and technology.
Download or read book Analysis of Numerical Methods for Nonlinear Hyperbolic Conservation Laws written by Xiangrong Yang and published by . This book was released on 2000 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hyperbolic Problems Theory Numerics Applications written by Heinrich Freistühler and published by Birkhäuser. This book was released on 2012-12-06 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods.
Download or read book Bonner mathematische Schriften written by and published by . This book was released on 1998 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advanced Numerical Approximation of Nonlinear Hyperbolic Equations written by B. Cockburn and published by Springer. This book was released on 2006-11-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.
Download or read book Front Tracking for Hyperbolic Conservation Laws written by Helge Holden and published by Springer. This book was released on 2015-12-10 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.
Download or read book Hyperbolic Problems Theory Numerics Applications written by Thomas Y. Hou and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
Download or read book Integral Geometry Radon Transforms and Complex Analysis written by Carlos A. Berenstein and published by Springer. This book was released on 2006-11-14 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the notes of five short courses delivered at the "Centro Internazionale Matematico Estivo" session "Integral Geometry, Radon Transforms and Complex Analysis" held in Venice (Italy) in June 1996: three of them deal with various aspects of integral geometry, with a common emphasis on several kinds of Radon transforms, their properties and applications, the other two share a stress on CR manifolds and related problems. All lectures are accessible to a wide audience, and provide self-contained introductions and short surveys on the subjects, as well as detailed expositions of selected results.