EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Pullback Equation for Differential Forms

Download or read book The Pullback Equation for Differential Forms written by Gyula Csató and published by Springer Science & Business Media. This book was released on 2011-11-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k ≤ n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.

Book The Pullback Equation for Differential Forms

Download or read book The Pullback Equation for Differential Forms written by and published by . This book was released on 2011-11-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Geometric Approach to Differential Forms

Download or read book A Geometric Approach to Differential Forms written by David Bachman and published by Springer Science & Business Media. This book was released on 2012-02-02 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Book Analysis On Manifolds

Download or read book Analysis On Manifolds written by James R. Munkres and published by CRC Press. This book was released on 2018-02-19 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

Book Exterior Differential Systems

Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.

Book Advanced Calculus

    Book Details:
  • Author : Harold M. Edwards
  • Publisher : Springer Science & Business Media
  • Release : 1994-01-05
  • ISBN : 9780817637071
  • Pages : 532 pages

Download or read book Advanced Calculus written by Harold M. Edwards and published by Springer Science & Business Media. This book was released on 1994-01-05 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.

Book Mechanics in Differential Geometry

Download or read book Mechanics in Differential Geometry written by Yves Talpaert and published by Walter de Gruyter. This book was released on 2006 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This course and reference book is autonomous and is based on differential geometry in a practical way with symplectic geometry as a tool. Didactic comparisons, diagrams, exercises highlight modern mechanics. Principles, canonical forms, perturbations, stability, qualitative dynamics, and more precede an original Fourier transforms method.

Book Differential Forms

    Book Details:
  • Author : Victor Guillemin
  • Publisher : World Scientific Publishing Company
  • Release : 2019-09-13
  • ISBN : 9789811213779
  • Pages : 272 pages

Download or read book Differential Forms written by Victor Guillemin and published by World Scientific Publishing Company. This book was released on 2019-09-13 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: There already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough. The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications. In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Čech cohomology groups of a differential manifold and its de Rham cohomology groups. Authoritative textbook on differential forms for undergraduates Includes numerous Examples and Exercises for further in-depth understanding on the presented concepts The first author, Victor Guillemin, is a world-renowned mathematician in the field of symplectic geometry His co-author, Peter Haine, is a talented doctoral student at MIT under Clark Barwick. His research interests center around homotopy theory, algebraic K-theory and algebraic geometry

Book Introduction to Differential Topology

Download or read book Introduction to Differential Topology written by Theodor Bröcker and published by Cambridge University Press. This book was released on 1982-09-16 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.

Book Differential Geometry

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Book Functional Differential Geometry

Download or read book Functional Differential Geometry written by Gerald Jay Sussman and published by MIT Press. This book was released on 2013-07-05 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Book An Introduction to Manifolds

Download or read book An Introduction to Manifolds written by Loring W. Tu and published by Springer Science & Business Media. This book was released on 2010-10-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Book Manifolds  Vector Fields  and Differential Forms

Download or read book Manifolds Vector Fields and Differential Forms written by Gal Gross and published by Springer Nature. This book was released on 2023-04-25 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook serves as an introduction to modern differential geometry at a level accessible to advanced undergraduate and master's students. It places special emphasis on motivation and understanding, while developing a solid intuition for the more abstract concepts. In contrast to graduate level references, the text relies on a minimal set of prerequisites: a solid grounding in linear algebra and multivariable calculus, and ideally a course on ordinary differential equations. Manifolds are introduced intrinsically in terms of coordinate patches glued by transition functions. The theory is presented as a natural continuation of multivariable calculus; the role of point-set topology is kept to a minimum. Questions sprinkled throughout the text engage students in active learning, and encourage classroom participation. Answers to these questions are provided at the end of the book, thus making it ideal for independent study. Material is further reinforced with homework problems ranging from straightforward to challenging. The book contains more material than can be covered in a single semester, and detailed suggestions for instructors are provided in the Preface.

Book Cartan for Beginners

    Book Details:
  • Author : Thomas Andrew Ivey
  • Publisher : American Mathematical Soc.
  • Release : 2003
  • ISBN : 0821833758
  • Pages : 394 pages

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Book An Introduction to Riemannian Geometry

Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Book Geometry of Differential Forms

Download or read book Geometry of Differential Forms written by Shigeyuki Morita and published by American Mathematical Soc.. This book was released on 2001 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the times of Gauss, Riemann, and Poincare, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms. The book by Morita is a comprehensive introduction to differential forms. It begins with a quick introduction to the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results concerning them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated is a detailed description of the Chern-Weil theory. The book can serve as a textbook for undergraduate students and for graduate students in geometry.

Book Second Year Calculus

    Book Details:
  • Author : David M. Bressoud
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461209595
  • Pages : 399 pages

Download or read book Second Year Calculus written by David M. Bressoud and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.