EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Primitive Soluble Permutation Groups of Degree Less than 256

Download or read book The Primitive Soluble Permutation Groups of Degree Less than 256 written by Mark W. Short and published by Springer. This book was released on 2006-11-15 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses the problem of describing all primitive soluble permutation groups of a given degree, with particular reference to those degrees less than 256. The theory is presented in detail and in a new way using modern terminology. A description is obtained for the primitive soluble permutation groups of prime-squared degree and a partial description obtained for prime-cubed degree. These descriptions are easily converted to algorithms for enumerating appropriate representatives of the groups. The descriptions for degrees 34 (die vier hochgestellt, Sonderzeichen) and 26 (die sechs hochgestellt, Sonderzeichen) are obtained partly by theory and partly by machine, using the software system Cayley. The material is appropriate for people interested in soluble groups who also have some familiarity with the basic techniques of representation theory. This work complements the substantial work already done on insoluble primitive permutation groups.

Book The Primitive Soluble Permutation Groups of Degree Less Than 256

Download or read book The Primitive Soluble Permutation Groups of Degree Less Than 256 written by Mark William Short and published by . This book was released on 1990 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Group Theory and the Theory of Groups  II

Download or read book Computational Group Theory and the Theory of Groups II written by Luise-Charlotte Kappe and published by American Mathematical Soc.. This book was released on 2010-04-08 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of contributions by researchers who were invited to the Harlaxton Conference on Computational Group Theory and Cohomology, held in August of 2008, and to the AMS Special Session on Computational Group Theory, held in October 2008. This volume showcases examples of how Computational Group Theory can be applied to a wide range of theoretical aspects of group theory. Among the problems studied in this book are classification of p-groups, covers of Lie groups, resolutions of Bieberbach groups, and the study of the lower central series of free groups. This volume also includes expository articles on the probabilistic zeta function of a group and on enumerating subgroups of symmetric groups. Researchers and graduate students working in all areas of Group Theory will find many examples of how Computational Group Theory helps at various stages of the research process, from developing conjectures through the verification stage. These examples will suggest to the mathematician ways to incorporate Computational Group Theory into their own research endeavors.

Book Surveys in Combinatorics 2021

Download or read book Surveys in Combinatorics 2021 written by Konrad K. Dabrowski and published by Cambridge University Press. This book was released on 2021-06-24 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: These nine articles provide up-to-date surveys of topics of contemporary interest in combinatorics.

Book Discovering Mathematics with Magma

Download or read book Discovering Mathematics with Magma written by Wieb Bosma and published by Springer Science & Business Media. This book was released on 2007-07-10 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the ontology and semantics of algebra, the computer algebra system Magma enables users to rapidly formulate and perform calculations in abstract parts of mathematics. Edited by the principal designers of the program, this book explores Magma. Coverage ranges from number theory and algebraic geometry, through representation theory and group theory to discrete mathematics and graph theory. Includes case studies describing computations underpinning new theoretical results.

Book Permutation Groups

    Book Details:
  • Author : John D. Dixon
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461207312
  • Pages : 360 pages

Download or read book Permutation Groups written by John D. Dixon and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.

Book Permutation Groups

    Book Details:
  • Author : Peter J. Cameron
  • Publisher : Cambridge University Press
  • Release : 1999-02-04
  • ISBN : 9780521653787
  • Pages : 236 pages

Download or read book Permutation Groups written by Peter J. Cameron and published by Cambridge University Press. This book was released on 1999-02-04 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes recent developments in the study of permutation groups for beginning graduate students.

Book Characters and Blocks of Solvable Groups

Download or read book Characters and Blocks of Solvable Groups written by James Cossey and published by Springer Nature. This book was released on with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Galois Theory

    Book Details:
  • Author : David A. Cox
  • Publisher : John Wiley & Sons
  • Release : 2012-03-27
  • ISBN : 1118218426
  • Pages : 602 pages

Download or read book Galois Theory written by David A. Cox and published by John Wiley & Sons. This book was released on 2012-03-27 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . .will certainly fascinate anyone interested in abstractalgebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics inmathematics, with historical roots that led to the development ofmany central concepts in modern algebra, including groups andfields. Covering classic applications of the theory, such assolvability by radicals, geometric constructions, and finitefields, Galois Theory, Second Edition delves into noveltopics like Abel’s theory of Abelian equations, casusirreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of severaltopics not covered in standard texts on Galois theory,including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of primeor prime-squared degree Abel's theorem about geometric constructions on thelemniscates Galois groups of quartic polynomials in allcharacteristics Throughout the book, intriguing Mathematical Notes andHistorical Notes sections clarify the discussed ideas andthe historical context; numerous exercises and examples use Mapleand Mathematica to showcase the computations related to Galoistheory; and extensive references have been added to provide readerswith additional resources for further study. Galois Theory, Second Edition is an excellent book forcourses on abstract algebra at the upper-undergraduate and graduatelevels. The book also serves as an interesting reference for anyonewith a general interest in Galois theory and its contributions tothe field of mathematics.

Book Handbook of Computational Group Theory

Download or read book Handbook of Computational Group Theory written by Derek F. Holt and published by CRC Press. This book was released on 2005-01-13 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame

Book A Course on Finite Groups

Download or read book A Course on Finite Groups written by H.E. Rose and published by Springer Science & Business Media. This book was released on 2009-12-16 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the richness of group theory to advanced undergraduate and graduate students, concentrating on the finite aspects. Provides a wealth of exercises and problems to support self-study. Additional online resources on more challenging and more specialised topics can be used as extension material for courses, or for further independent study.

Book Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces

Download or read book Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces written by Jürgen Berndt and published by Springer. This book was released on 2006-11-14 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Heisenberg groups, or H-type groups, introduced by A. Kaplan, and Damek-Ricci harmonic spaces are particularly nice Lie groups with a vast spectrum of properties and applications. These harmonic spaces are homogeneous Hadamard manifolds containing the H-type groups as horospheres. These notes contain a thorough study of their Riemannian geometry by means of a detailed treatment of their Jacobi vector fields and Jacobi operators. Some problems are included and will hopefully stimulate further research on these spaces. The book is written for students and researchers, assuming only basic knowledge of Riemannian geometry, and it contains a brief survey of the background material needed to follow the entire treatment.

Book Algorithmic Algebraic Combinatorics and Gr  bner Bases

Download or read book Algorithmic Algebraic Combinatorics and Gr bner Bases written by Mikhail Klin and published by Springer Science & Business Media. This book was released on 2009-12-24 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries. There is special emphasis on algorithmic aspects and the use of the theory of Gröbner bases.

Book Representations of Affine Hecke Algebras

Download or read book Representations of Affine Hecke Algebras written by Nanhua Xi and published by Springer. This book was released on 2006-11-15 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

Book Difference Spaces and Invariant Linear Forms

Download or read book Difference Spaces and Invariant Linear Forms written by Rodney Nillsen and published by Springer. This book was released on 2006-11-15 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Difference spaces arise by taking sums of finite or fractional differences. Linear forms which vanish identically on such a space are invariant in a corresponding sense. The difference spaces of L2 (Rn) are Hilbert spaces whose functions are characterized by the behaviour of their Fourier transforms near, e.g., the origin. One aim is to establish connections between these spaces and differential operators, singular integral operators and wavelets. Another aim is to discuss aspects of these ideas which emphasise invariant linear forms on locally compact groups. The work primarily presents new results, but does so from a clear, accessible and unified viewpoint, which emphasises connections with related work.

Book Potential Theory on Infinite Networks

Download or read book Potential Theory on Infinite Networks written by Paolo M. Soardi and published by Springer. This book was released on 2006-11-15 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to give a unified approach to new developments in discrete potential theory and infinite network theory. The author confines himself to the finite energy case, but this does not result in loss of complexity. On the contrary, the functional analytic machinery may be used in analogy with potential theory on Riemann manifolds. The book is intended for researchers with interdisciplinary interests in one of the following fields: Markov chains, combinatorial graph theory, network theory, Dirichlet spaces, potential theory, abstract harmonic analysis, theory of boundaries.

Book Finsler Metrics   A Global Approach

Download or read book Finsler Metrics A Global Approach written by Marco Abate and published by Springer. This book was released on 2006-11-15 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.