EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Preparation of Thin Film of Silicon Nitride by Thermal Nitridation

Download or read book The Preparation of Thin Film of Silicon Nitride by Thermal Nitridation written by Donald Pon and published by . This book was released on 1964 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nitride for Microelectronic Applications

Download or read book Silicon Nitride for Microelectronic Applications written by John T. Milek and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: The large amount of literature on the technology of thin film silicon nitride indi cates the interest of the Department of Defense, NASA and the semiconductor industry in the development and full utilization of the material. This survey is concerned only with the thin film characteristics and properties of silicon nitride as currently utilized by the semiconductor or microelectronics industry. It also includes the various methods of preparation. Applications in microelectronic devices and circuits are to be provided in Part 2 of the survey. Some bulk silicon nitride property data is included for basic reference and comparison purposes. The survey specifically excludes references and information not within the public domain. ACKNOWLEDGEMENT This survey was generated under U.S. Air Force Contract F33615-70-C-1348, with Mr. B.R. Emrich (MAAM) Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio acting as Project Engineer. The author would like to acknowledge the assis tance of Dr. Judd Q. Bartling, Litton Systems, Inc., Guidance and Control Systems Division, Woodland Hills, California and Dr. Thomas C. Hall, Hughes Aircraft Company, Culver City, California in reviewing the survey. v CONTENTS Preface. i Introduction 1 Literature Review. 1 Bulk Characteristics 1 Technology Overview. 2 References 4 Methods of Preparation • 5 Introduction • 5 Direct Nitridation Method 8 Evaporation Method • 9 Glow Discharge Method. 10 Ion Beam Method. 13 Sputtering Methods 13 Pyrolytic Methods. 15 Silane and Ammonia Reaction 15 Silicon Tetrachloride and Tetrafluoride Reaction. 24 Silane and Hydrazine Reaction 27 Production Operations. 28 Equipment.

Book Silicon Nitride  Silicon Dioxide Thin Insulating Films  and Other Emerging Diele c trics VIII

Download or read book Silicon Nitride Silicon Dioxide Thin Insulating Films and Other Emerging Diele c trics VIII written by Ram Ekwal Sah and published by The Electrochemical Society. This book was released on 2005 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formation of Silicon Nitride from the 19th to the 21st Century

Download or read book Formation of Silicon Nitride from the 19th to the 21st Century written by Raymond C. Sangster and published by Trans Tech Publications. This book was released on 2005 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive reference gathers information published on the chemistry of silicon nitride and its products, uses, and markets. Separate chapters overview the manufacture of silicon nitride powder, the production of silicon nitride ceramics via the reaction bonding process, the intrinsic reactions between crystalline silicon surfaces and N2 for silicon wafers, nitridation of Si-O based materials, and chemical vapor deposition of Si-H compounds. The author, who originally worked on a similar book for the Gmelin Institute, cites 4,000-plus source documents and points the researcher to relevant handbooks, papers, and review articles for further reading. Distributed in the U.S. by Enfield. Annotation : 2005 Book News, Inc., Portland, OR (booknews.com).

Book Silicon Nitride and Silicon Dioxide Thin Insulating Films VII

Download or read book Silicon Nitride and Silicon Dioxide Thin Insulating Films VII written by Electrochemical Society. Meeting and published by The Electrochemical Society. This book was released on 2003 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering

Download or read book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering written by Tuomas Hänninen and published by Linköping University Electronic Press. This book was released on 2018-02-13 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their chemical composition, chemical bonding structure, and mechanical properties to link the growth conditions to the film properties. Silicon nitride films were synthesized by reactive high power impulse magnetron sputtering (HiPIMS) from a Si target in Ar/N2 atmospheres, whereas silicon oxynitride films were grown by using nitrous oxide as the reactive gas. Silicon carbonitride was synthesized by two different methods. The first method was using acetylene (C2H2) in addition to N2 in a Si HiPIMS process and the other was co-sputtering of Si and C, using HiPIMS for Si and direct current magnetron sputtering (DCMS) for graphite targets in an Ar/N2 atmosphere. Langmuir probe measurements were carried out for the silicon nitride and silicon oxynitride processes and positive ion mass spectrometry for the silicon nitride processes to gain further understanding on the plasma conditions during film growth. The target current and voltage waveforms of the reactive HiPIMS processes were evaluated. The main deposition parameter affecting the nitrogen concentration of silicon nitride films was found to be the nitrogen content in the plasma. Films with nitrogen contents of 50 at.% were deposited at N2/Ar flow ratios of 0.3 and above. These films showed Si-N as the dominating component in Si 2p X-ray photoelectron spectroscopy (XPS) core level spectra and Si–Si bonds were absent. The substrate temperature and target power were found to affect the nitrogen content to a lower extent. The residual stress and hardness of the films were found to increase with the film nitrogen content. Another factors influencing the coating stress were the process pressure, negative substrate bias, substrate temperature, and HiPIMS pulse energy. Silicon nitride coatings with good adhesion and low levels of compressive residual stress were grown by using a pressure of 600 mPa, a substrate temperature below 200 °C, pulse energies below 2.5 Ws, and negative bias voltages up to 100 V. The elemental composition of silicon oxynitride films was shown to depend on the target power settings as well as on the nitrous oxide flow rate. Silicon oxide-like films were synthesized under poisoned target surface conditions, whereas films deposited in the transition regime between poisoned and metallic conditions showed higher nitrogen concentrations. The nitrogen content of the films deposited in the transition region was controlled by the applied gas flow rate. The applied target power did not affect the nitrogen concentration in the transition regime, while the oxygen content increased at decreasing target powers. The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, namely the refractive index and extinction coefficient, were shown to depend on the film chemical bonding, with the stoichiometric films displaying optical properties falling between those of silicon oxide and silicon nitride. The properties of silicon carbonitride films were greatly influenced by the synthesis method. The films deposited by HiPIMS using acetylene as the carbon source showed silicon nitride-like mechanical properties, such as a hardness of ~ 20 GPa and compressive residual stresses of 1.7 – 1.9 GPa, up to film carbon contents of 30 at.%. At larger film carbon contents the films had increasingly amorphous carbon-like properties, such as densities below 2 g/cm3 and hardnesses below 10 GPa. The films with more than 30 at.% carbon also showed columnar morphologies in cross-sectional scanning electron microscopy, whereas films with lower carbon content showed dense morphologies. Due to the use of acetylene the carbonitride films contained hydrogen, up to ~ 15 at.%. The co-sputtered silicon carbonitride films showed a layered SiNx/CNx structure. The hardness of these films increased with the film carbon content, reaching a maximum of 18 GPa at a film carbon content of 12 at.%. Comparatively hard and low stressed films were grown by co-sputtering using a C target power of 1200 W for a C content around 12 at.%, a negative substrate bias less than 100 V, and a substrate temperature up to 340 °C.

Book Si Silicon

    Book Details:
  • Author : Eberhard F. Krimmel
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 3662099012
  • Pages : 417 pages

Download or read book Si Silicon written by Eberhard F. Krimmel and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of three Gmelin Handbook volumes in the silicon se ries that will cover silicon nitride, a normaUy solid material with the idealized formula Si N . This volume, 3 4 "Silicon" Supplement Volume B Sc, is devoted to applications of silicon nitride in microelec tronics and solar ceUs. The compendium is the product of a critical selection among more than 17600 publications on silicon nitride issued up to January 1990. Out of a total of 5900 publications dealing with the fabrication and use of microelectronic devices (including 2400 Japanese patent applications), about 4000 papers have been selected for this volume. The current volume is grouped into three parts. Chapters 2 to 8 deal with general, non specific microelectronic applications of silicon nitride, Chapters 9 to 31 cover applications of silicon nitride in specific devices and device components, and Chapter 32 is devoted exclusively to applications in solar ceUs, including information on our general understanding of the role of silicon nitride in photovoltaic devices. Experimental results on the preparation of silicon nitride layers for application in unspeci fied devices are in Chapter 2. Whenever the preparation is in connection with specific devices, the information is presented in the respective chapters. The general preparation of silicon nitride layers is not covered in this volume, but will appear in "Silicon" Supplement Volume B 5a. See also the Introductory Remarks, Chapter 1, p. 1.

Book Silicon Nitride and Silicon Dioxide Thin Insulating Films

Download or read book Silicon Nitride and Silicon Dioxide Thin Insulating Films written by and published by . This book was released on 2001 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Nitridation of Silicon Dioxide Thin Films on Silicon

Download or read book Thermal Nitridation of Silicon Dioxide Thin Films on Silicon written by Richard Joseph Koba and published by . This book was released on 1986 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering

Download or read book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering written by Tuomas Hänninen and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their chemical composition, chemical bonding structure, and mechanical properties to link the growth conditions to the film properties. Silicon nitride films were synthesized by reactive high power impulse magnetron sputtering (HiPIMS) from a Si target in Ar/N 2 atmospheres, whereas silicon oxynitride films were grown by using nitrous oxide as the reactive gas. Silicon carbonitride was synthesized by two different methods. The first method was using acetylene (C 2 H 2 ) in addition to N 2 in a Si HiPIMS process and the other was co-sputtering of Si and C, using HiPIMS for Si and direct current magnetron sputtering (DCMS) for graphite targets in an Ar/N 2 atmosphere. Langmuir probe measurements were carried out for the silicon nitride and silicon oxynitride processes and positive ion mass spectrometry for the silicon nitride processes to gain further understanding on the plasma conditions during film growth. The target current and voltage waveforms of the reactive HiPIMS processes were evaluated. The main deposition parameter affecting the nitrogen concentration of silicon nitride films was found to be the nitrogen content in the plasma. Films with nitrogen contents of 50 at.% were deposited at N 2 /Ar flow ratios of 0.3 and above. These films showed Si-N as the dominating component in Si 2p X-ray photoelectron spectroscopy (XPS) core level spectra and Si–Si bonds were absent. The substrate temperature and target power were found to affect the nitrogen content to a lower extent. The residual stress and hardness of the films were found to increase with the film nitrogen content. Another factors influencing the coating stress were the process pressure, negative substrate bias, substrate temperature, and HiPIMS pulse energy. Silicon nitride coatings with good adhesion and low levels of compressive residual stress were grown by using a pressure of 600 mPa, a substrate temperature below 200 °C, pulse energies below 2.5 Ws, and negative bias voltages up to 100 V. The elemental composition of silicon oxynitride films was shown to depend on the target power settings as well as on the nitrous oxide flow rate. Silicon oxide-like films were synthesized under poisoned target surface conditions, whereas films deposited in the transition regime between poisoned and metallic conditions showed higher nitrogen concentrations. The nitrogen content of the films deposited in the transition region was controlled by the applied gas flow rate. The applied target power did not affect the nitrogen concentration in the transition regime, while the oxygen content increased at decreasing target powers. The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, namely the refractive index and extinction coefficient, were shown to depend on the film chemical bonding, with the stoichiometric films displaying optical properties falling between those of silicon oxide and silicon nitride. The properties of silicon carbonitride films were greatly influenced by the synthesis method. The films deposited by HiPIMS using acetylene as the carbon source showed silicon nitride-like mechanical properties, such as a hardness of ~ 20 GPa and compressive residual stresses of 1.7 – 1.9 GPa, up to film carbon contents of 30 at.%. At larger film carbon contents the films had increasingly amorphous carbon-like properties, such as densities below 2 g/cm 3 and hardnesses below 10 GPa. The films with more than 30 at.% carbon also showed columnar morphologies in cross-sectional scanning electron microscopy, whereas films with lower carbon content showed dense morphologies. Due to the use of acetylene the carbonitride films contained hydrogen, up to ~ 15 at.%. The co-sputtered silicon carbonitride films showed a layered SiN x /CN x structure. The hardness of these films increased with the film carbon content, reaching a maximum of 18 GPa at a film carbon content of 12 at.%. Comparatively hard and low stressed films were grown by co-sputtering using a C target power of 1200 W for a C content around 12 at.%, a negative substrate bias less than 100 V, and a substrate temperature up to 340 °C.

Book Silicon Nitride for Microelectronic Applications

Download or read book Silicon Nitride for Microelectronic Applications written by J. T. Milek and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This survey is concerned with the use of silicon nitride in the semi conductor and microelectronics industries. The Handbook of Electronic Materials, volume 3, comprises part 1 of this survey and includes preparation and properties information. This report was prepared by Hughes Aircraft Company, Culver City, California under Contract Number F336lS-70-C-1348. The work was admini stered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, with Hr. B. Emrich, Project Engineer. The Electronic Properties Information Center (EPIC) is a designated Information Analysis Center of the Department of Defense, authorized to pro vide information to the entire DoD community. The purpose of the Center is to provide a highly competent source of information and data on the electronic, optical and magnetic properties of materials of value to the Department of Defense. Its major function is to evaluate, compile and publish the experi mental data from the world's unclassified literature concerned with the properties of materials. All materials relevant to the field of electronics are within the scope of EPIC: insulators, semiconductors, metals, super conductors, ferrites, ferroelectrics, ferromagnetics, electroluminescents, thermionic emitters and optical materials. The Center's scope includes information on over 100 basic properties of materials; information generally regarded as being in the area of devices and/or circuitry is excluded. v CONTENTS Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Diffusion Mask Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . '" 11 Glass-to-Metal Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Passivation Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Memory Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Radiation Hardening Applications . . . . . . . . . . . . . . . •. . . . . . . . .

Book Official Gazette of the United States Patent and Trademark Office

Download or read book Official Gazette of the United States Patent and Trademark Office written by and published by . This book was released on 1995 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Chemicals and Gases for the Semiconductor Industry

Download or read book Handbook of Chemicals and Gases for the Semiconductor Industry written by Ashutosh Misra and published by John Wiley & Sons. This book was released on 2002-03-22 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive guide to the chemicals and gases used in semiconductor manufacturing The fabrication of semiconductor devices involves a series of complex chemical processes such as photolithography, etching, cleaning, thin film deposition, and polishing. Until now, there has been no convenient source of information on the properties, applications, and health and safety considerations of the chemicals used in these processes. The Handbook of Chemicals and Gases for the Semiconductor Industry meets this need. Each of the Handbook's eight chapters is related to a specific area of semiconductor processing. The authors provide a brief overview of each step in the process, followed by tables containing physical properties, handling, safety, and other pertinent information on chemicals and gases typically used in these processes. The 270 chemical and gas entries include data on physical properties, emergency treatment procedures, waste disposal, and incompatible materials, as well as descriptions of applications, chemical mechanisms involved, and references to the literature. Appendices cross-reference entries by process, chemical name, and CAS number. The Handbook's eight chapters are: Thin Film Deposition Materials Wafer Cleaning Materials Photolithography Materials Wet and Dry Etching Materials Chemical Mechanical Planarizing Methods Carrier Gases Uncategorized Materials Semiconductor Chemicals Analysis No other single source brings together these useful and important data on chemicals and gases used in the manufacture of semiconductor devices. The Handbook of Chemicals and Gases for the Semiconductor Industry will be a valuable reference for process engineers, scientists, suppliers to the semiconductor industry, microelectronics researchers, and students.

Book Synthesis and Characterization of Silicon Nitride Thin Films and Their Application as Hermetic Coatings on Optical Fibers for Protection Against Hydrogen Penetration

Download or read book Synthesis and Characterization of Silicon Nitride Thin Films and Their Application as Hermetic Coatings on Optical Fibers for Protection Against Hydrogen Penetration written by Qixian Lin and published by . This book was released on 1995 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formation of Silicon Nitride

Download or read book Formation of Silicon Nitride written by Raymond C. Sangster and published by Trans Tech Publications Ltd. This book was released on 2005-06-01 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: The elements: Si, N, O, C and H, have strong chemical affinities for one another. Under the correct conditions, Si-N bonding will occur in almost any Si-N-(O/C/H), and many related, reaction systems; although Si-O and Si-C are formidable competitors to Si-N. The most favored Si-N compound is stoichiometric Si3N4. It comes in three common varieties. How they interrelate, how one finds them and (above all ) how one makes them - and how sometimes they just happen to form - are the subjects of this book, with due attention being paid to closely related matters.

Book Silicon Nitride and Silicon Dioxide Thin Insulating Films

Download or read book Silicon Nitride and Silicon Dioxide Thin Insulating Films written by and published by . This book was released on 2003 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Nitride

    Book Details:
  • Author : Emiliano Jose Hierra
  • Publisher : Nova Science Publishers
  • Release : 2012
  • ISBN : 9781619428652
  • Pages : 0 pages

Download or read book Silicon Nitride written by Emiliano Jose Hierra and published by Nova Science Publishers. This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon nitride (Si3N4) ceramic is used in numerous applications because of its superior properties, such as high-temperature strength, good oxidation resistance and low thermal expansion coefficient. In this book, the authors present current research in the study of the synthesis, properties and applications of silicon nitride. Topics include the optical and vibration properties of silicon rich nitride; high temperature oxidation of silicon nitride based ceramics; low temperature preparation of phosphate bonded silicon nitride ceramics with high mechanical strength; the SPS-sintering process and use of ceramics for high-temperature engineering applications; synthesis and properties of silicon nitride coatings; and the use of silicon nitride as biomaterial.