EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Optical and Thermal Properties of Quantum Cascade Lasers

Download or read book The Optical and Thermal Properties of Quantum Cascade Lasers written by Craig Anthony Evans and published by . This book was released on 2008 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Studies of Thermal and Electronic Properties of Quantum Cascade Lasers

Download or read book Optical Studies of Thermal and Electronic Properties of Quantum Cascade Lasers written by Alexander Joachim Barry Borak and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Fabrication of Quantum Cascade Lasers and Light Emitting Devices

Download or read book Design and Fabrication of Quantum Cascade Lasers and Light Emitting Devices written by Mariano Troccoli (fisico) and published by . This book was released on 2000 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Cascade Lasers

Download or read book Quantum Cascade Lasers written by Jérôme Faist and published by OUP Oxford. This book was released on 2013-03-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to quantum cascade lasers, including the basic underlying models used to describe the device. It aims at giving a synthetic view of the topic including the aspects of the physics, the technology, and the use of the device. It should also provide a guide for the application engineer to use this device in systems. The book is based on lecture notes of a class given for Masters and beginning PhD students. The idea is to provide an introduction to the new and exciting developments that intersubband transitions have brought to the use of the mid-infrared and terahertz region of the electromagnetic spectrum. The book provides an introductory part to each topic so that it can be used in a self-contained way, while references to the literature will allow deeper studies for further research.

Book Mid Infrared and Terahertz Quantum Cascade Lasers

Download or read book Mid Infrared and Terahertz Quantum Cascade Lasers written by Dan Botez and published by Cambridge University Press. This book was released on 2023-06-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art overview of this rapidly expanding field, featuring fundamental theory, practical applications, and real-life examples.

Book Handbook of Optoelectronic Device Modeling and Simulation

Download or read book Handbook of Optoelectronic Device Modeling and Simulation written by Joachim Piprek and published by CRC Press. This book was released on 2017-10-12 with total page 887 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.

Book High Power Continuous Wave Quantum Cascade Lasers with Increased Ridge Width

Download or read book High Power Continuous Wave Quantum Cascade Lasers with Increased Ridge Width written by Ankesh Mahesh Kumar Todi and published by . This book was released on 2017 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Cascade Lasers have recently gained considerable attention for their capability to emit infrared radiation in a broad infrared spectral region, very compact dimensions, and high optical power/efficiency. Increasing continuous wave optical power is one of the main research directions in the field. A straightforward approach to increasing optical power in the pulsed regime is to increase number of stages in the cascade structure. However, due to a low active region thermal conductivity, the increase in number of stages leads to active region overheating in continuous wave operation. In this work, an alternative approach to power scaling with device dimensions is explored: number of stages is reduced to reduce active region thermal resistance, while active region lateral size is increased for reaching high optical power level. Using this approach, power scaling for active region width increase from 10[micrometer] to 20[micrometer] is demonstrated for the first time. An analysis based on a simple semi-empirical model suggests that laser power can be significantly improved by increasing characteristic temperature T0 that describes temperature dependence of laser threshold current density.

Book Optical Properties of Quantum Cascade Lasers

Download or read book Optical Properties of Quantum Cascade Lasers written by and published by . This book was released on 2008 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal and Waveguide Optimization of Broad Area Quantum Cascade Laser Performance

Download or read book Thermal and Waveguide Optimization of Broad Area Quantum Cascade Laser Performance written by Matthew Michael Suttinger and published by . This book was released on 2017 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Cascade Lasers are a novel source of coherent infrared light, unique in their tunability over the mid-infrared and terahertz range of frequencies. Advances in bandgap engineering and semiconductor processing techniques in recent years have led to the development of highly efficient quantum cascade lasers capable of room temperature operation. Recent work has demonstrated power scaling with broad area quantum cascade lasers by increasing active region width beyond the standard ~10 [micrometer]. Taking into account thermal effects caused by driving a device with electrical power, an experimentally fitted model is developed to predict the optical power output in both pulsed and continuous operation with varying device geometry and minor changes to quantum cascade laser active region design. The effects of the characteristic temperatures of threshold current density and slope efficiency, active region geometry, and doping, on output power are studied in the model. The model is then used to refine the active region design for increased power out in continuous operation for a broad area design. Upon testing the new design, new thermal effects on rollover current density are observed. The model is then refined to reflect the new findings and more accurately predict output power characteristics.

Book Quantum Cascade Lasers

    Book Details:
  • Author : Jérôme Faist
  • Publisher : Oxford University Press
  • Release : 2013-03-14
  • ISBN : 0198528248
  • Pages : 321 pages

Download or read book Quantum Cascade Lasers written by Jérôme Faist and published by Oxford University Press. This book was released on 2013-03-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the physics, fabrication technology, and applications of the quantum cascade laser.

Book Frontiers in Optics and Photonics

Download or read book Frontiers in Optics and Photonics written by Federico Capasso and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 1866 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.

Book Nonlinear Photonics in Mid infrared Quantum Cascade Lasers

Download or read book Nonlinear Photonics in Mid infrared Quantum Cascade Lasers written by Louise Jumpertz and published by Springer. This book was released on 2017-08-31 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

Book Quantum Cascade Lasers Based on Intra cavity Frequency Mixing

Download or read book Quantum Cascade Lasers Based on Intra cavity Frequency Mixing written by Min Jang and published by . This book was released on 2012 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) operate due to population inversion on intersubband in unipolar mutiple-quantum-well (MQW) heterostructure. QCLs are considered one of the most flexible and powerful light semiconductor sources in the mid- and far-infrared (IR) wavelength range, covering most of the critical spectral regions relevant to IR applications. InGaAs/InAlAs/InP QCLs are the only semiconductor lasers capable of continuous wave (CW) operation at room temperature (RT) in the spectral range 3.4-12 micron. This dissertation details the development of RT QCLs based on passive nonlinear coupled-quantum-well structures monolithically integrated into mid-IR QCLs to provide a giant nonlinear response for the pumping frequency. The primary focus of short-wavelength approach in this dissertation is to develop of RT InGaAs/InAlAs/InP QCLs for lamda=2.5-3.7 micron region, based on quasi-phase-matched intracavity second harmonic generation (SHG) associated with intersubband transition. Intersubband optical transition can be engineered by the choice of quantum well and barrier thicknesses to provide the appropriate energy levels, optical dipole matrix elements, and electron scattering rates amongst other parameters. Thus, aside from their linear optical properties, resonant intersubband transitions in coupled QW's can also be designed to produce nonlinear optical medium with giant nonlinear optical susceptibilities. In long-wavelength region, at high temperature, the population inversion is reduced between the upper and lower laser levels due to the longitudinal optical (LO) phonon scattering of thermal carriers in the upper laser state and the thermal backfilling of carriers into the lower laser level from the injector state. This dissertation aims to improve an alternative approach for THz QCL sources based on intra-cavity difference frequency generation (DFG) in dual-wavelength mid-IR QCLs with a passive nonlinear structure, designed for giant optical nonlinearity. Further studies describe that Cerenkov DFG scheme allows for extraction of THz radiation along the whole length of the laser waveguide and provides directional THz emission in 1.2-4.5 THz range. An important requirement for many applications, like chemical sensing and molecular spectroscopy, is single-mode emission. We demonstrate single-mode RT DFG THz QCLs operation in 1-5 THz region by employing devices as integrated dual-period DFB lasers, where efficient solid state RT sources do not exist.

Book Mid infrared Quantum Cascade Lasers for Chaos Secure Communications

Download or read book Mid infrared Quantum Cascade Lasers for Chaos Secure Communications written by Olivier Spitz and published by Springer Nature. This book was released on 2021-05-15 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.

Book Quantum Wells  Wires and Dots

Download or read book Quantum Wells Wires and Dots written by Paul Harrison and published by John Wiley & Sons. This book was released on 2016-04-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: Properties of non-parabolic energy bands Matrix solutions of the Poisson and Schrödinger equations Critical thickness of strained materials Carrier scattering by interface roughness, alloy disorder and impurities Density matrix transport modelling Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is presented in a lucid style with easy to follow steps, illustrative examples and questions and computational problems in each chapter to help the reader build solid foundations of understanding to a level where they can initiate their own theoretical investigations. Suitable for postgraduate students of semiconductor and condensed matter physics, the book is essential to all those researching in academic and industrial laboratories worldwide. Instructors can contact the authors directly ([email protected] / [email protected]) for Solutions to the problems.

Book Optical Properties of Nanostructures

Download or read book Optical Properties of Nanostructures written by Ying Fu and published by CRC Press. This book was released on 2011-08-08 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications. The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.