Download or read book The Nuts and Bolts of Proofs written by Antonella Cupillari and published by Academic Press. This book was released on 2001 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book leads readers through a progressive explanation of what mathematical proofs are, why they are important, and how they work, along with a presentation of basic techniques used to construct proofs. The Second Edition presents more examples, more exercises, a more complete treatment of mathematical induction and set theory, and it incorporates suggestions from students and colleagues. Since the mathematical concepts used are relatively elementary, the book can be used as a supplement in any post-calculus course. This title has been successfully class-tested for years. There is an index for easier reference, a more extensive list of definitions and concepts, and an updated bibliography. An extensive collection of exercises with complete answers are provided, enabling students to practice on their own. Additionally, there is a set of problems without solutions to make it easier for instructors to prepare homework assignments. * Successfully class-tested over a number of years * Index for easy reference * Extensive list of definitions and concepts * Updated biblography
Download or read book A Transition to Proof written by Neil R. Nicholson and published by CRC Press. This book was released on 2019-03-21 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
Download or read book Proofs and Refutations written by Imre Lakatos and published by Cambridge University Press. This book was released on 1976 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.
Download or read book The Nuts and bolts of Paced ECG Interpretation written by Tom Kenny and published by John Wiley & Sons. This book was released on 2011-09-07 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nothing is more perplexing to the clinician new to device therapy than having to deal with cardiac electrocardiograms from a device patient. Pacemakers and other implantable cardiac rhythm management devices leave their “imprint” on ECGs and can significantly change what clinicians see - or expect to see. Evaluating paced ECGs can be challenging, yet nowhere is it taught in any sort of comprehensive manner. Designed specifically for clinicians new to device therapy, The Nuts and Bolts of Interpreting Paced ECGs and EGMs offers practical, reliable and objective information on paced cardiac electrograms. Written in a lively, intelligent and easy to navigate style, emphasizing real-life clinical practice and practical tips, this book includes illustrated paced ECGs by skilled artists to help minimize “fuzzy” lines and emphasize key points. Each chapter concludes with a checklist of key points from each subject (“Nuts and Bolts”).
Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Download or read book Independent Component Analysis written by James V. Stone and published by MIT Press. This book was released on 2004 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.
Download or read book Mathematical Proofs written by Gary Chartrand and published by Pearson. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.
Download or read book Introduction to Analysis written by Maxwell Rosenlicht and published by Courier Corporation. This book was released on 2012-05-04 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
Download or read book Handbook of Bolts and Bolted Joints written by John Bickford and published by CRC Press. This book was released on 1998-04-28 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting time-tested standard as well as reliable emerging knowledge on threaded fasteners and joints, this book covers how to select parts and materials, predict behavior, control assembly processes, and solve on-the-job problems. It examines key issues affecting bolting in the automotive, pressure vessel, petrochemical, aerospace, and structura
Download or read book All the Mathematics You Missed written by Thomas A. Garrity and published by 清华大学出版社有限公司. This book was released on 2004 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Primer of Real Analytic Functions written by KRANTZ and published by Birkhäuser. This book was released on 2013-03-09 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.
Download or read book Boolean Algebra and Its Applications written by J. Eldon Whitesitt and published by Courier Corporation. This book was released on 2012-05-24 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Download or read book Guide to Elliptic Curve Cryptography written by Darrel Hankerson and published by Springer Science & Business Media. This book was released on 2006-06-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic * Distills complex mathematics and algorithms for easy understanding * Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software tools This comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.
Download or read book Euler s Gem written by David S. Richeson and published by Princeton University Press. This book was released on 2019-07-23 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Download or read book Tales of Impossibility written by David S. Richeson and published by Princeton University Press. This book was released on 2021-11-02 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
Download or read book Elliptic Functions written by Komaravolu Chandrasekharan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of a course of lectures on elliptic functions, given in German, at the Swiss Federal Institute of Technology, Zurich, during the summer semester of 1982. Its aim is to give some idea of the theory of elliptic functions, and of its close connexion with theta-functions and modular functions, and to show how it provides an analytic approach to the solution of some classical problems in the theory of numbers. It comprises eleven chapters. The first seven are function-theoretic, and the next four concern arithmetical applications. There are Notes at the end of every chapter, which contain references to the literature, comments on the text, and on the ramifications, old and new, of the problems dealt with, some of them extending into cognate fields. The treatment is self-contained, and makes no special demand on the reader's knowledge beyond the elements of complex analysis in one variable, and of group theory.